Table Of Contents

Specifications Sheet
- General Information .. 1

Device Driver List
- General Information .. 5

License Management
- General Information .. 19

Basic Setup Guide
- General Information .. 24

Installing RouterOS with CD-Install
- CD-Install .. 38

Installing RouterOS with Floppies
- Floppy Install ... 43

Installing RouterOS with NetInstall
- NetInstall .. 44

Configuration Management
- General Information .. 47

FTP (File Transfer Protocol) Server
- .. 51
Unnumbered Interfaces .. 87

OSPF ... 88
 General Information .. 88
 General Setup .. 89
 Areas .. 91
 Networks ... 92
 Interfaces ... 93
 Virtual Links .. 94
 Neighbours .. 94
 General Information .. 95

RIP .. 101
 General Information .. 101
 General Setup .. 102
 Interfaces ... 103
 Networks ... 104
 Neighbors .. 105
 Routes .. 105
 General Information .. 106

Routes, Equal Cost Multipath Routing, Policy Routing 109
 General Information .. 109
 Static Routes ... 110
 Routing Tables ... 112
 Policy Rules ... 113
 Application Examples .. 114

BGP (Border Gateway Protocol) .. 116
 General Information .. 116
 BGP Setup ... 117
 BGP Network ... 118
 BGP Peers .. 119
 Troubleshooting .. 119

ARLAN 655 Wireless Client Card .. 121
 General Information .. 121
 Installation ... 121
 Wireless Interface Configuration 122
 Troubleshooting .. 123

Bridge .. 125
 General Information .. 125
 Bridge Interface Setup .. 127
 Port Settings ... 128
 Bridge Monitoring ... 128
 Bridge Port Monitoring .. 129
 Bridge Host Monitoring ... 130
 Bridge Firewall .. 130
 Application Example .. 132
 Troubleshooting .. 133

CISCO/Aironet 2.4GHz 11Mbps Wireless Interface 134
 General Information .. 134
<table>
<thead>
<tr>
<th>Interface</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EoIP Tunnel Interface</td>
<td>239</td>
</tr>
<tr>
<td>General Information</td>
<td>239</td>
</tr>
<tr>
<td>EoIP Setup</td>
<td>240</td>
</tr>
<tr>
<td>EoIP Application Example</td>
<td>241</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>243</td>
</tr>
<tr>
<td>IP Security</td>
<td>244</td>
</tr>
<tr>
<td>General Information</td>
<td>244</td>
</tr>
<tr>
<td>Policy Settings</td>
<td>247</td>
</tr>
<tr>
<td>Peers</td>
<td>249</td>
</tr>
<tr>
<td>Remote Peer Statistics</td>
<td>251</td>
</tr>
<tr>
<td>Installed SAs</td>
<td>251</td>
</tr>
<tr>
<td>Flushing Installed SA Table</td>
<td>252</td>
</tr>
<tr>
<td>Counters</td>
<td>253</td>
</tr>
<tr>
<td>General Information</td>
<td>254</td>
</tr>
<tr>
<td>IPIP Tunnel Interfaces</td>
<td>259</td>
</tr>
<tr>
<td>General Information</td>
<td>259</td>
</tr>
<tr>
<td>IPIP Setup</td>
<td>260</td>
</tr>
<tr>
<td>General Information</td>
<td>261</td>
</tr>
<tr>
<td>L2TP Interface</td>
<td>263</td>
</tr>
<tr>
<td>General Information</td>
<td>263</td>
</tr>
<tr>
<td>L2TP Client Setup</td>
<td>265</td>
</tr>
<tr>
<td>Monitoring L2TP Client</td>
<td>266</td>
</tr>
<tr>
<td>L2TP Server Setup</td>
<td>266</td>
</tr>
<tr>
<td>L2TP Server Users</td>
<td>267</td>
</tr>
<tr>
<td>L2TP Application Examples</td>
<td>268</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>271</td>
</tr>
<tr>
<td>PPPoE</td>
<td>272</td>
</tr>
<tr>
<td>General Information</td>
<td>272</td>
</tr>
<tr>
<td>PPPoE Client Setup</td>
<td>274</td>
</tr>
<tr>
<td>Monitoring PPPoE Client</td>
<td>275</td>
</tr>
<tr>
<td>PPPoE Server Setup (Access Concentrator)</td>
<td>276</td>
</tr>
<tr>
<td>PPPoE Server Users</td>
<td>277</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>278</td>
</tr>
<tr>
<td>Application Examples</td>
<td>279</td>
</tr>
<tr>
<td>PPTP</td>
<td>281</td>
</tr>
<tr>
<td>General Information</td>
<td>281</td>
</tr>
<tr>
<td>PPTP Client Setup</td>
<td>283</td>
</tr>
<tr>
<td>Monitoring PPTP Client</td>
<td>284</td>
</tr>
<tr>
<td>PPTP Server Setup</td>
<td>284</td>
</tr>
<tr>
<td>PPTP Server Users</td>
<td>285</td>
</tr>
<tr>
<td>PPTP Application Examples</td>
<td>286</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>289</td>
</tr>
<tr>
<td>VLAN Interface</td>
<td>290</td>
</tr>
<tr>
<td>General Information</td>
<td>290</td>
</tr>
<tr>
<td>VLAN Setup</td>
<td>291</td>
</tr>
<tr>
<td>Application Example</td>
<td>292</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Dynamic DNS Update Tool</td>
<td>404</td>
</tr>
<tr>
<td>Certificate Management</td>
<td>400</td>
</tr>
<tr>
<td>Web Proxy</td>
<td>390</td>
</tr>
<tr>
<td>UPnP</td>
<td>387</td>
</tr>
<tr>
<td>SOCKS Proxy Server</td>
<td>382</td>
</tr>
<tr>
<td>IP Pools</td>
<td>380</td>
</tr>
<tr>
<td>HotSpot Gateway</td>
<td>350</td>
</tr>
<tr>
<td>HotSpot Cookies</td>
<td>364</td>
</tr>
<tr>
<td>Walled Garden</td>
<td>365</td>
</tr>
<tr>
<td>Customizing HotSpot Servlet</td>
<td>366</td>
</tr>
<tr>
<td>Possible Error Messages</td>
<td>372</td>
</tr>
<tr>
<td>Enabling Universal Plug-n-Play</td>
<td>388</td>
</tr>
<tr>
<td>Flushing DNS cache</td>
<td>348</td>
</tr>
<tr>
<td>Static DNS Entries</td>
<td>348</td>
</tr>
<tr>
<td>Cache Monitoring</td>
<td>348</td>
</tr>
<tr>
<td>HotSpot Active Users</td>
<td>361</td>
</tr>
<tr>
<td>HotSpot Remote AAA</td>
<td>362</td>
</tr>
<tr>
<td>HotSpot Server Settings</td>
<td>363</td>
</tr>
<tr>
<td>HotSpot Users</td>
<td>360</td>
</tr>
<tr>
<td>HotSpot User Profiles</td>
<td>358</td>
</tr>
<tr>
<td>Rebuilding the Cache</td>
<td>396</td>
</tr>
<tr>
<td>Access List</td>
<td>394</td>
</tr>
<tr>
<td>Active Connections</td>
<td>395</td>
</tr>
<tr>
<td>Monitoring</td>
<td>393</td>
</tr>
<tr>
<td>Direct Access List</td>
<td>391</td>
</tr>
<tr>
<td>Managing the Cache</td>
<td>396</td>
</tr>
<tr>
<td>Rebuilding the Cache</td>
<td>384</td>
</tr>
<tr>
<td>Transparent Mode</td>
<td>390</td>
</tr>
<tr>
<td>HTTP Methods</td>
<td>390</td>
</tr>
<tr>
<td>HotSpot Gateway Setup</td>
<td>356</td>
</tr>
<tr>
<td>HotSpot Step-by-Step User Guide for dhcp-pool Method</td>
<td>373</td>
</tr>
<tr>
<td>HotSpot Step-by-Step User Guide for enabled-address Method</td>
<td>376</td>
</tr>
<tr>
<td>General Information</td>
<td>350</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>GPS Synchronization</td>
<td>406</td>
</tr>
<tr>
<td>General Information</td>
<td>406</td>
</tr>
<tr>
<td>Synchronizing with a GPS Receiver</td>
<td>407</td>
</tr>
<tr>
<td>GPS Monitoring</td>
<td>408</td>
</tr>
<tr>
<td>LCD Management</td>
<td>409</td>
</tr>
<tr>
<td>General Information</td>
<td>409</td>
</tr>
<tr>
<td>Configuring the LCD's Settings</td>
<td>411</td>
</tr>
<tr>
<td>LCD Information Display Configuration</td>
<td>411</td>
</tr>
<tr>
<td>LCD Troubleshooting</td>
<td>412</td>
</tr>
<tr>
<td>MNDP</td>
<td>414</td>
</tr>
<tr>
<td>General Information</td>
<td>414</td>
</tr>
<tr>
<td>Setup</td>
<td>415</td>
</tr>
<tr>
<td>Neighbour List</td>
<td>415</td>
</tr>
<tr>
<td>NTP (Network Time Protocol)</td>
<td>417</td>
</tr>
<tr>
<td>General Information</td>
<td>417</td>
</tr>
<tr>
<td>Client</td>
<td>418</td>
</tr>
<tr>
<td>Server</td>
<td>419</td>
</tr>
<tr>
<td>Time Zone</td>
<td>419</td>
</tr>
<tr>
<td>RouterBoard-specific functions</td>
<td>421</td>
</tr>
<tr>
<td>General Information</td>
<td>421</td>
</tr>
<tr>
<td>BIOS upgrading</td>
<td>422</td>
</tr>
<tr>
<td>BIOS Configuration</td>
<td>423</td>
</tr>
<tr>
<td>System Health Monitoring</td>
<td>424</td>
</tr>
<tr>
<td>LED Management</td>
<td>425</td>
</tr>
<tr>
<td>Fan voltage control</td>
<td>425</td>
</tr>
<tr>
<td>Console Reset Jumper</td>
<td>426</td>
</tr>
<tr>
<td>Support Output File</td>
<td>427</td>
</tr>
<tr>
<td>General Information</td>
<td>427</td>
</tr>
<tr>
<td>Generating Support Output File</td>
<td>427</td>
</tr>
<tr>
<td>System Resource Management</td>
<td>429</td>
</tr>
<tr>
<td>General Information</td>
<td>430</td>
</tr>
<tr>
<td>System Resource</td>
<td>430</td>
</tr>
<tr>
<td>IRQ Usage Monitor</td>
<td>431</td>
</tr>
<tr>
<td>IO Port Usage Monitor</td>
<td>431</td>
</tr>
<tr>
<td>USB Port Information</td>
<td>432</td>
</tr>
<tr>
<td>PCI Information</td>
<td>432</td>
</tr>
<tr>
<td>Reboot</td>
<td>433</td>
</tr>
<tr>
<td>Shutdown</td>
<td>433</td>
</tr>
<tr>
<td>Router Identity</td>
<td>434</td>
</tr>
<tr>
<td>Date and Time</td>
<td>434</td>
</tr>
<tr>
<td>Configuration Change History</td>
<td>435</td>
</tr>
<tr>
<td>Bandwidth Test</td>
<td>436</td>
</tr>
<tr>
<td>General Information</td>
<td>436</td>
</tr>
<tr>
<td>Server Configuration</td>
<td>437</td>
</tr>
<tr>
<td>Client Configuration</td>
<td>438</td>
</tr>
<tr>
<td>ICMP Bandwidth Test</td>
<td>440</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Numbers</td>
<td>493</td>
</tr>
<tr>
<td>Regional Settings</td>
<td>496</td>
</tr>
<tr>
<td>Audio CODECs</td>
<td>497</td>
</tr>
<tr>
<td>AAA</td>
<td>497</td>
</tr>
<tr>
<td>Gatekeeper</td>
<td>499</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>502</td>
</tr>
<tr>
<td>A simple example</td>
<td>502</td>
</tr>
<tr>
<td>System Watchdog</td>
<td>509</td>
</tr>
<tr>
<td>General Information</td>
<td>509</td>
</tr>
<tr>
<td>Hardware Watchdog Management</td>
<td>509</td>
</tr>
<tr>
<td>UPS Monitor</td>
<td>511</td>
</tr>
<tr>
<td>General Information</td>
<td>511</td>
</tr>
<tr>
<td>UPS Monitor Setup</td>
<td>512</td>
</tr>
<tr>
<td>Runtime Calibration</td>
<td>514</td>
</tr>
<tr>
<td>UPS Monitoring</td>
<td>514</td>
</tr>
<tr>
<td>VRRP</td>
<td>516</td>
</tr>
<tr>
<td>General Information</td>
<td>516</td>
</tr>
<tr>
<td>VRRP Routers</td>
<td>517</td>
</tr>
<tr>
<td>Virtual IP addresses</td>
<td>518</td>
</tr>
<tr>
<td>A simple example of VRRP fail over</td>
<td>519</td>
</tr>
</tbody>
</table>
Specifications Sheet

Document revision 2.5 (Wed Apr 21 10:49:51 GMT 2004)

This document applies to MikroTik RouterOS V2.8

Table of Contents

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
</table>

General Information

Description

Major features

- **Firewall and NAT** - stateful packet filtering; Peer-to-Peer protocol filtering; source and destination NAT; classification by source MAC, IP addresses, ports, protocols, protocol options, interfaces, internal marks, content, matching frequency

- **Routing** - Static routing; Equal cost multi-path routing; Policy based routing (classification by source and destination addresses and/or by firewall mark); RIP v1 / v2, OSPF v2, BGP v4

- **Data Rate Management** - per IP / protocol / subnet / port / firewall mark; HTB, PCQ, RED, SFQ, byte limited queue, packet limited queue; hierarchical limitation, CIR, MIR, contention ratios, dynamic client rate equalizing (PCQ)

- **HotSpot** - HotSpot Gateway with RADIUS authentication/accounting; data rate limitation; traffic quota; real-time status information; walled-garden; customized HTML login pages; iPass support; SSL secure authentication

- **Point-to-Point tunneling protocols** - PPTP, PPPoE and L2TP Access Concentrators and clients; PAP, CHAP, MSCHAPv1 and MSCHAPv2 authentication protocols; RADIUS authentication and accounting; MPPE encryption; compression for PPPoE; data rate limitation; PPPoE dial on demand

- **Simple tunnels** - IPIP tunnels, EoIP (Ethernet over IP)

- **IPsec** - IP security AH and ESP protocols; Diffie-Hellman groups 1,2,5; MD5 and SHA1 hashing algorithms; DES, 3DES, AES-128, AES-192, AES-256 encryption algorithms; Perfect Forwarding Secresy (PFS) groups 1,2,5

- **Web proxy** - FTP, HTTP and HTTPS caching proxy server; transparent HTTP caching proxy; SOCKS protocol support; support for caching on a separate drive; access control lists; caching lists; parent proxy support

- **Caching DNS client** - name resolving for local use; Dynamic DNS Client; local DNS cache with static entries

- **DHCP** - DHCP server per interface; DHCP relay; DHCP client; multiple DHCP networks; static and dynamic DHCP leases

- **Universal Client** - Transparent address translation not depending on the client's setup

- **VRRP** - VRRP protocol for high availability
• UPnP - Universal Plug-and-Play support
• NTP - Network Time Protocol server and client; synchronization with GPS system
• Monitoring/Accounting - IP traffic accounting, firewall actions logging
• SNMP - read-only access
• M3P - MikroTik Packet Packer Protocol for Wireless links and Ethernet
• MNDP - MikroTik Neighbor Discovery Protocol; also supports Cisco Discovery Protocol (CDP)
• Tools - ping; traceroute; bandwidth test; ping flood; telnet; SSH; packet sniffer

TCP/IP protocol suite:

• Wireless - IEEE802.11a/b/g wireless client and Access Point; Wireless Distribution System (WDS) support; virtual AP; 40 and 104 bit WEP; access control list; authentication on RADIUS server; roaming (for wireless client); Access Point bridging
• Bridge - spanning tree protocol; multiple bridge interfaces; bridge firewalling
• VLAN - IEEE802.1q Virtual LAN support on Ethernet and WLAN links; multiple VLANs; VLAN bridging
• Synchronous - V.35, V.24, E1/T1, X.21, DS3 (T3) media types; sync-PPP, Cisco HDLC, Frame Relay line protocols; ANSI-617d (ANDI or annex D) and Q933a (CCITT or annex A) Frame Relay LMI types
• Asynchronous - serial PPP dial-in / dial-out; PAP, CHAP, MSCHAPv1 and MSCHAPv2 authentication protocols; RADIUS authentication and accounting; onboard serial ports; modem pool with up to 128 ports; dial on demand
• ISDN - ISDN dial-in / dial-out; PAP, CHAP, MSCHAPv1 and MSCHAPv2 authentication protocols; RADIUS authentication and accounting; 128K bundle support; Cisco HDLC, x75i, x75ui, x75bui line protocols; dial on demand
• SDSL - Single-line DSL support; line termination and network termination modes

Layer 2 connectivity

Hardware requirements

• CPU and motherboard - advanced 4th generation (core frequency 100MHz or more), 5th generation (Intel Pentium, Cyrix 6X86, AMD K5 or comparable) or newer uniprocessor Intel IA-32 (i386) compatible (multiple processors are not supported)
• RAM - minimum 48 MB, maximum 1 GB; 64 MB or more recommended
• Hard Drive/Flash - standard ATA interface controller and drive (SCSI and USB controllers and drives are not supported; RAID controllers that require additional drivers are not supported) with minimum of 64 MB space

Hardware needed for installation time only

• Floppy-based installation - standard AT floppy controller and 3.5" disk drive connected as the first floppy disk drive (A); AT, PS/2 or USB keyboard; VGA-compatible video controller card and monitor
• CD-based installation - standard ATA/ATAPI interface controller and CD drive supporting
"El Torito" bootable CDs (you might need also to check if the router's BIOS supports booting from this type of media); AT, PS/2 or USB keyboard; VGA-compatible video controller card and monitor

- **Floppy-based network installation** - standard AT floppy controller and 3.5" disk drive connected as the first floppy disk drive (A); PCI Ethernet network interface card supported by MikroTik RouterOS (see the Device Driver List for the list)

- **Full network-based installation** - PCI Ethernet network interface card supported by MikroTik RouterOS (see the Device Driver List for the list) with PXE or EtherBoot extension booting ROM (you might need also to check if the router's BIOS supports booting from network)

Depending on installation method chosen the router must have the following hardware:

Configuration possibilities

RouterOS provides powerful command-line configuration interface. You can also manage the router through WinBox - the easy-to-use remote configuration GUI for Windows -, which provides all the benefits of the command-line interface, without the actual "command-line", which may scare novice users. Major features:

- Clean and consistent user interface
- Runtime configuration and monitoring
- Multiple connections
- User policies
- Action history, undo/redo actions
- safe mode operation
- Scripts can be scheduled for executing at certain times, periodically, or on events. All command-line commands are supported in scripts

- **Local terminal console** - AT, PS/2 or USB keyboard and VGA-compatible video controller card with monitor

- **Serial console** - First RS232 asynchronous serial port (usually, onboard port marked as COM1), which is by default set to 9600bit/s, 8 data bits, 1 stop bit, no parity

When router is not configured, there are only two ways to configure it:

- **Local terminal console** - AT, PS/2 or USB keyboard and VGA-compatible video controller card with monitor

- **Serial console** - any (you may choose any one; the first, also known as COM1, is used by default) RS232 asynchronous serial port, which is by default set to 9600bit/s, 8 data bits, 1 stop bit, no parity

- **Telnet** - telnet server is running on 23 TCP port by default

- **SSH** - SSH (secure shell) server is running on 22 TCP port by default (available only if security package is installed)

- **MAC Telnet** - MikroTik MAC Telnet protocol server is by default enabled on all Ethernet-like interfaces

- **Winbox** - Winbox is a RouterOS remote administration GUI for Windows, that use 3986 TCP port (or 3987 if security package is installed)
After the router is configured, it may be managed through the following interfaces:
Device Driver List

This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
 Summary
Ethernet
 Specifications
 Description
 Notes
Wireless
 Specifications
 Description
Aironet Arlan
 Specifications
 Description
RadioLAN
 Specifications
 Description
Synchronous Serial
 Specifications
 Description
Asynchronous Serial
 Specifications
 Description
ISDN
 Specifications
 Description
VoIP
 Specifications
 Description
xDSL
 Specifications
 Description
HomePNA
 Specifications
 Description
LCD
 Specifications
 Description
PCMCIA Adapters
 Specifications
 Description
GPRS Cards
 Specifications
General Information

Summary

The document lists the drivers, included in MikroTik RouterOS and the devices that are tested to work with MikroTik RouterOS. If a device is not listed here, it does not mean the device is not supported, it still may work. It just means that the device was not tested.

Ethernet

Packages required: system

Description

3Com 509 Series

Chipset type: 3Com 509 Series ISA 10Base

Compatibility:

- 3Com EtherLink III

3Com FastEtherLink

Chipset type: 3Com 3e590/3c900 (3Com FastEtherLink and FastEtherLink XL) PCI 10/100Base

Compatibility:

- 3c590 Vortex 10BaseT
- 3c592 chip
- 3c595 Vortex 100BaseTX
- 3c595 Vortex 100BaseT4
- 3c595 Vortex 100Base-MII
- 3c597 chip
- 3Com Vortex
- 3c900 Boomerang 10BaseT
- 3c900 Boomerang 10Mbit/s Combo
- 3c900 Cyclone 10Mbit/s Combo
- 3c900B-FL Cyclone 10Base-FL
- 3c905 Boomerang 100BaseTX
- 3c905 Boomerang 100BaseT4
- 3c905B Cyclone 100BaseTX
• 3c905B Cyclone 10/100/BNC
• 3c905B-FX Cyclone 100BaseFX
• 3c905C Tornado
• 3c980 Cyclone
• 3cSOHO100-TX Hurricane
• 3CSOHO100B-TX
• 3c555 Laptop Hurricane
• 3c575 Boomerang CardBus
• 3CCFE575 Cyclone CardBus
• 3CCFE656 Cyclone CardBus
• 3c575 series CardBus
• 3Com Boomerang

ADMtek Pegasus

Chipset type: ADMtek Pegasus/Pegasus II USB 10/100BaseT

Compatibility:

• Planet 10/100Base-TX USB Ethernet Adapter UE-9500
• Linksys Instant EtherFast 10/100 USB Network Adapter USB100TX

AMD PCnet

Chipset type: AMD PCnet/PCnet II ISA/PCI 10BaseT

Compatibility:

• AMD PCnet-ISA
• AMD PCnet-ISA II
• AMD PCnet-PCI II
• AMD 79C960 based cards

AMD PCnet32

Chipset type: AMD PCnet32 PCI 10BaseT and 10/100BaseT

Compatibility:

• AMD PCnet-PCI
• AMD PCnet-32
• AMD PCnet-Fast
Broadcom Tigon3

Chipset type: Broadcom Tigon3 PCI 10/100/1000BaseT
Compatibility:
- Broadcom Tigon3 570x
- Broadcom Tigon3 5782
- Broadcom Tigon3 5788
- Broadcom Tigon3 5901
- Broadcom Tigon3 5901-2
- SysKonnect SK-9Dxx Gigabit Ethernet
- SysKonnect SK-9Mxx Gigabit Ethernet
- Altima AC100x
- Altima AC9100

Davicom DM9102

Chipset type: Davicom DM9102 PCI 10/100Base
Compatibility:
- Davicom DM9102
- Davicom DM9102A
- Davicom DM9102A+DM9801
- Davicom DM9102A+DM9802

DEC 21x4x 'Tulip'

Chipset type: DEC 21x4x "Tulip" PCI 10/100Base
Compatibility:
- Digital DC21040 Tulip
- Digital DC21041 Tulip
- Digital DS21140 Tulip
- 21140A chip
- 21142 chip
- Digital DS21143 Tulip
- D-Link DFE 570TX 4-port
- Lite-On 82c168 PNIC
- Macronix 98713 PMAC
- Macronix 98715 PMAC
- Macronix 98725 PMAC
- ASIX AX88140
- Lite-On LC82C115 PNIC-II
- ADMtek AN981 Comet
- Compex RL100-TX
- Intel 21145 Tulip
- IMC QuikNic FX
- Conexant LANfinity

Intel EtherExpressPro

Chipset type: Intel i82557 "Speedo3" (Intel EtherExpressPro) PCI 10/100Base

Compatibility:
- Intel i82557/i82558/i82559ER/i82801BA-7 EtherExpressPro PCI cards

Intel PRO/1000

Chipset type: Intel i8254x (Intel PRO/1000) PCI 10/100/1000Base

Compatibility:
- Intel PRO/1000 Gigabit Server Adapter (i82542, Board IDs: 700262-xxx, 717037-xxx)
- Intel PRO/1000 F Server Adapter (i82543, Board IDs: 738640-xxx, A38888-xxx)
- Intel PRO/1000 T Server Adapter (i82543, Board IDs: A19845-xxx, A33948-xxx)
- Intel PRO/1000 XT Server Adapter (i82544, Board IDs: A51580-xxx)
- Intel PRO/1000 XF Server Adapter (i82544, Board IDs: A50484-xxx)
- Intel PRO/1000 T Desktop Adapter (i82544, Board IDs: A62947-xxx)
- Intel PRO/1000 MT Desktop Adapter (i82540, Board IDs: A78408-xxx, C91016-xxx)
- Intel PRO/1000 MT Server Adapter (i82545, Board IDs: A92165-xxx, C31527-xxx)
- Intel PRO/1000 MT Dual Port Server Adapter (i82546, Board IDs: A92111-xxx, C29887-xxx)
- Intel PRO/1000 MT Quad Port Server Adapter (i82546, Board IDs: C32199-xxx)
- Intel PRO/1000 MF Server Adapter (i82545, Board IDs: A91622-xxx, C33915-xxx)
- Intel PRO/1000 MF Server Adapter (LX) (i82545, Board IDs: A91624-xxx, C33916-xxx)
- Intel PRO/1000 MF Dual Port Server Adapter (i82546, Board IDs: A91620-xxx, C30848-xxx)

Marvell Yukon

Chipset type: Marvell Yukon 88E80xx PCI 10/100/1000Base
Compatibility:

- 3Com 3C940 Gigabit LOM Ethernet Adapter
- 3Com 3C941 Gigabit LOM Ethernet Adapter
- Allied Telesyn AT-2970LX Gigabit Ethernet Adapter
- Allied Telesyn AT-2970LX/2SC Gigabit Ethernet Adapter
- Allied Telesyn AT-2970SX Gigabit Ethernet Adapter
- Allied Telesyn AT-2970SX/2SC Gigabit Ethernet Adapter
- Allied Telesyn AT-2970TX Gigabit Ethernet Adapter
- Allied Telesyn AT-2970TX/2TX Gigabit Ethernet Adapter
- Allied Telesyn AT-2971SX Gigabit Ethernet Adapter
- Allied Telesyn AT-2971T Gigabit Ethernet Adapter
- DGE-530T Gigabit Ethernet Adapter
- EG1032 v2 Instant Gigabit Network Adapter
- EG1064 v2 Instant Gigabit Network Adapter
- Marvell 88E8001 Gigabit LOM Ethernet Adapter
- Marvell RDK-80xx Adapter
- Marvell Yukon Gigabit Ethernet 10/100/1000Base-T Adapter
- N-Way PCI-Bus Giga-Card 1000/100/10Mbps(L)
- SK-9521 10/100/1000Base-T Adapter
- SK-98xx Gigabit Ethernet Server Adapter
- SMC EZ Card 1000
- Marvell Yukon 88E8010 based
- Marvell Yukon 88E8003 based
- Marvell Yukon 88E8001 based

National Semiconductor DP83810

Chipset type: National Semiconductor DP83810 PCI 10/100BaseT

Compatibility:

- RouterBoard 200 built-in Ethernet
- RouterBoard 24 4-port Ethernet
- NS DP8381x-based cards

National Semiconductor DP83820

Chipset type: National Semiconductor DP83820 PCI 10/100/1000BaseT
Compatibility:
• Planet ENW-9601T
• NS DP8382x-based cards

NE2000 ISA

Chipset type: NE2000 ISA 10Base
Compatibility:
• various ISA cards

NE2000 PCI

Chipset type: NE2000 PCI 10Base
Compatibility:
• RealTek RTL-8029
• Winbond 89C940 and 89C940F
• Compex RL2000
• KTI ET32P2
• NetVin NV5000SC
• Via 86C926
• SureCom NE34
• Holtek HT80232
• Holtek HT80229
• IMC EtherNic/PCI FO

NS8390

Chipset type: NS8390 PCMCIA/CardBus 10Base
Compatibility:
• D-Link DE-660 Ethernet
• NE-2000 Compatible PCMCIA Ethernet
• NS8390-based PCMCIA cards

RealTek RTL8129

Chipset type: RealTek RTL8129 PCI 10/100Base
Compatibility:
• RealTek RTL8129 Fast Ethernet
• RealTek RTL8139 Fast Ethernet
• RTL8139A/B/C chip
• RTL8130 chip
• SMC1211TX EZCard 10/100 (RealTek RTL8139)
• Accton MPX5030 (RealTek RTL8139)
• D-Link DFE 538TX

RealTek RTL8169

Chipset type: RealTek RTL8169 PCI 10/100/1000Base

Compatibility:
• RealTek RTL8169 Gigabit Ethernet (*not* recommended: may lock up the router)

Sundance ST201 'Alta'

Chipset type: Sundance ST201 "Alta" PCI 10/100Base

Compatibility:
• D-Link DFE-550TX Fast Ethernet Adapter
• D-Link DFE-550FX 100Mbps Fiber-optics Adapter
• D-Link DFE-580TX 4-port Server Adapter (*not* recommended: may lock up the system)
• D-Link DFE-530TXS Fast Ethernet Adapter
• D-Link DL10050-based FAST Ethernet Adapter
• Sundance ST201 "Alta" chip
• Kendin KS8723 chip

TI ThunderLAN

Chipset type: TI ThunderLAN PCI 10/100Base

Compatibility:
• Compaq Netelligent 10 T
• Compaq Netelligent 10 T/2
• Compaq Netelligent 10/100 TX
• Compaq NetFlex-3/P
• Olicom OC-2183
• Olicom OC-2185
• Olicom OC-2325
• Olicom OC-2326

VIA vt612x 'Velocity'

Chipset type: VIA vt612x "Velocity" PCI 10/100/1000Base

Compatibility:

• VIA VT6120
• VIA VT6121
• VIA VT6122

VIA vt86c100 'Rhine'

Chipset type: VIA vt86c100 "Rhine" PCI 10/100Base

Compatibility:

• VIA Rhine (vt3043)
• VIA Rhine II (vt3065 AKA vt86c100)
• VIA VT86C100A Rhine
• VIA VT6102 Rhine-II
• VIA VT6105 Rhine-III
• VIA VT6105M Rhine-III
• RouterBOARD 44 4-port Fast Ethernet card
• D-Link DFE 530TX

Winbond w89c840

Chipset type: Winbond w89c840 PCI 10/100Base

Compatibility:

• Winbond W89c840
• Compex RL100-ATX

Notes

For ISA cards load the driver by specifying the I/O base address. IRQ is not required.

Wireless

Packages required: `wireless`

Description
Atheros

Chipset type: Atheros AR5001X PC/PCI 11/54Mbit/s IEEE802.11a/b/g

Compatibility:
- Intel 5000 series
- Dlink DWL-A520
- Dlink DWL-G650
- Atheros AR5000 chipset series based IEEE802.11a (AR5210 MAC plus AR5110 PHY chips) cards
- Atheros AR5001A chipset series based IEEE802.11a (AR5211 MAC plus AR5111 PHY chips) cards
- Atheros AR5001X chipset series based IEEE802.11a (AR5211 MAC plus AR2111 PHY chips), IEEE802.11b/g (AR5211 MAC plus AR2111 PHY chips), IEEE802.11a/b/g (AR5211 MAC plus AR5111 and 2111 PHY chips) cards
- Atheros AR5001X+ chipset series based IEEE802.11a (AR5212 MAC plus AR5111 PHY chips), IEEE802.11b/g (AR5212 MAC plus AR2111 PHY chips), IEEE802.11a/b/g (AR5212 MAC plus AR5111 and 2111 PHY chips) cards
- Atheros AR5002X+ chipset series based IEEE802.11b/g (AR5212 MAC plus AR2112 PHY chips), IEEE802.11a/b/g (AR5212 MAC plus AR5112 PHY chips) cards
- Atheros AR5004X+ chipset series based IEEE802.11b/g (AR5213 MAC plus AR2112 PHY chips), IEEE802.11a/b/g (AR5213 MAC plus AR5112 PHY chips) cards

Cisco/Aironet

Chipset type: Cisco/Aironet ISA/PCI/PC 11Mbit/s IEEE802.11b

Compatibility:
- Aironet ISA/PCI/PC4800 2.4GHz DS 11Mbit/s Wireless LAN Adapters (100mW)
- Aironet ISA/PCI/PC4500 2.4GHz DS 2Mbit/s Wireless LAN Adapters (100mW)
- CISCO AIR-PCI340 2.4GHz DS 11Mbit/s Wireless LAN Adapters (30mW)
- CISCO AIR-PCI/PC350/352 2.4GHz DS 11Mbit/s Wireless LAN Adapters (100mW)

Intersil Prism II

Chipset type: Intersil Prism II PC/PCI 11Mbit/s IEEE802.11b

Compatibility:
- Intersil PRISM2 Reference Design 11Mbit/s IEEE802.11b WLAN Card
- GemTek WL-211 Wireless LAN PC Card
- Compaq iPaq HNW-100 11Mbit/s 802.11b WLAN Card
• Samsung SWL2000-N 11Mbit/s 802.11b WLAN Card
• Z-Com XI300 11Mbit/s 802.11b WLAN Card
• ZoomAir 4100 11Mbit/s 802.11b WLAN Card
• Linksys WPC11 11Mbit/s 802.11b WLAN Card
• Addtron AWP-100 11Mbit/s 802.11b WLAN Card
• D-Link DWL-650 11Mbit/s 802.11b WLAN Card
• SMC 2632W 11Mbit/s 802.11b WLAN Card
• BroMax Freeport 11Mbit/s 802.11b WLAN Card
• Intersil PRISM2 Reference Design 11Mbit/s WLAN Card
• Bromax OEM 11Mbit/s 802.11b WLAN Card (Prism 2.5)
• corega K.K. Wireless LAN PCC-11
• corega K.K. Wireless LAN PCCA-11
• CONTEC FLEXSCAN/FX-DDS110-PCC
• PLANEX GeoWave/GW-NS110
• Ambicom WL1100 11Mbit/s 802.11b WLAN Card
• LeArtery SYNCBYAIR 11Mbit/s 802.11b WLAN Card
• Intermec MobileLAN 11Mbit/s 802.11b WLAN Card
• NETGEAR MA401 11Mbit/s 802.11 WLAN Card
• Intersil PRISM Freedom 11Mbit/s 802.11 WLAN Card
• OTC Wireless AirEZY 2411-PCC 11Mbit/s 802.11 WLAN Card
• Z-Com XI-325HP PCMCIA 200mW Card
• Z-Com XI-626 Wireless PCI Card

Note If planned to use WEP with Prism cards see link for more information: Wireless Security

WaveLAN/ORiNOCO

Chipset type: Lucent/Agere/Proxim WaveLAN/ORiNOCO ISA/PC 11Mbit/s IEEE802.11b
Compatibility:
• WaveLAN Bronze/Gold/Silver ISA/PCMCIA

Aironet Arlan

Packages required: arlan

Description

This is driver for legacy Aironet Arlan cards, not for newer Cisco/Aironet cards.
Chipset type: Aironet Arlan IC2200 ISA 2Mbit/s IEEE802.11b

Compatibility:
• Aironet Arlan 655

RadioLAN

Packages required: *radiolan*

Description

This is driver for legacy RadioLAN cards.

Chipset type: RadioLAN ISA/PC 10Mbit/s 5.8GHz

Compatibility:
• RadioLAN ISA card (Model 101)
• RadioLAN PCMCIA card

Synchronous Serial

Packages required: *synchronous*

Description

• Moxa C101 ISA and PCI V.35 (4 Mbit/s)
• Moxa C502 PCI 2-port V.35 (8 Mbit/s)
• Cyclades PCI PC-300 V.35 (5 Mbit/s)
• Cyclades PCI PC-300 E1/T1
• FarSync PCI V.35/X.21 (8.448 Mbit/s)
• LMC/SBEI wanPCI-1T1E1 PCI T1/E1 (also known as DS1 or LMC1200P, 1.544 Mbit/s or 2.048 Mbit/s)
• LMC/SBEI wanPCI-1T3 PCI T3 (also known as DS3, 44.736Mbit/s)
• Sangoma S5141 (dual-port) and S5142 (quad-port) PCI RS232/V.35/X.21 (4Mbit/s - primary port and 512Kbit/s - secondary ones)
• Sangoma S5148 (single-port) and S5147 (dual-port) PCI E1/T1

Asynchronous Serial

Packages required: *system*

Description

• Standard Communication Ports Com1 and Com2
• Moxa Smartio C104H/PCI, CP-114, CT-114, CP-132, C168H, CP-168H, and CP-168U PCI 2/4/8 port up to 4 cards (up to 32 ports)
• Cyclades Cyclom-Y and Cyclades-Z Series PCI cards up to 64 ports per card, up to 4 cards (up to 256 ports)
• TCL DataBooster 4 or 8 PCI 4/8 port cards
• Sangoma S514/56 PCI 56 or 64Kbit/s DDS DSU with secondary 128Kbit/s RS232 port (Note: this card is not for modem pools or serial terminals)

ISDN

Packages required: *isdn*

Description

PCI ISDN cards:
• Eicon.Diehl Diva PCI
• Sedlbauer Speed Card PCI
• ELSA Quickstep 1000PCI
• Traverse Technologie NETjet PCI S0 card
• Teles PCI
• Dr. Neuhaus Niccy PCI
• AVM Fritz PCI
• Gazel PCI ISDN cards
• HFC-2BS0 based PCI cards (TeleInt SA1)
• Winbond W6692 based PCI cards

VoIP

Packages required: *telephony*

Description

H.323 Protocol VoIP Analog Gateways
• QuickNet LineJack ISA
• QuickNet PhoneJack ISA
• Voicetronix V4PCI - 4 analog telephone lines cards
• Zaptel X.100P IP telephony card (1 analog line)

xDSL

Packages required: *synchronous*
Description

Xpeed 300 SDSL cards (up to 6.7km twisted pair wire connection, max 2.3Mbit/s)

HomePNA

Packages required: system

Description

Linksys HomeLink PhoneLine Network Card (up to 10Mbit/s home network over telephone line)

LCD

Packages required: lcd

Description

- Crystalfontz Intelligent Serial LCD Module 632 (16x2 characters)
- Powertip Character LCD Module PC2404 (24x4 characters)

PCMCIA Adapters

Packages required: system

Description

- Vadem VG-469 PCMCIA-ISA adapter (one or two PCMCIA ports)
- RICOH PCMCIA-PCI Bridge with R5C475 II or RC476 II chip (one or two PCMCIA ports)
- CISCO/Aironet PCMCIA adapter (ISA and PCI versions) for CISCO/Aironet PCMCIA cards only

GPRS Cards

Packages required: wireless

Description

- MikroTik-supplied GPRS card
 For more information, see interface list.
License Management

Document revision 3 (Tue Jul 13 13:04:07 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
General Information
 Summary
 Specifications
 Description
License Management
 Description
 Property Description
 Command Description

General Information

Summary

MikroTik RouterOS software has a licensing system with Software License (Software Key) issued for each individual installation of the RouterOS. RouterOS version 2.8 introduces a new licensing scheme with different key system. You should upgrade your key when updating to 2.8 version from 2.5, 2.6 or 2.7 versions.

Specifications

Packages required: system
License required: level1
Home menu level: /system license
Hardware usage: Not significant

Description

The Software License can be obtained through the Account Server at www.mikrotik.com after the MikroTik RouterOS has been installed. The Software ID of the installation is required when obtaining the Software License. Please read the MikroTik RouterOS Basic Setup Guide for detailed explanation of the installation and licensing process.

RouterOS allows you to use all its features without registration for about 24 hours from the first run. Note that if you shut the router down, the countdown is paused, and it is resumed only when the router is started again. During this period you must get a key, otherwise you will need to reinstall the system. A purchased license key allows you to use RouterOS features according to the chosen license level for unlimited time, and gives you rights to freely upgrade and downgrade its versions for the term of one year since the key was purchased. A free registered license key (referred as a SOHO key further on) allows you to use a restricted set of functions for unlimited period of time, but does not allows upgrading and downgrading versions.
There are 6 licensing levels, each providing some additional features. Level 0 means that there is no key and all the features are enabled for one day. Level 2 is a transitional license level, that allows to use all the features were allowed by your original license key for a previous version.

<table>
<thead>
<tr>
<th>Level number</th>
<th>1 (SOHO)</th>
<th>3 (ISP)</th>
<th>4 (WISP)</th>
<th>5 (WISP AP)</th>
<th>6 (Controller)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wireless Client and Bridge</td>
<td>-</td>
<td>-</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Wireless AP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Synchronous interfaces</td>
<td>-</td>
<td>-</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>EoIP tunnels</td>
<td>1</td>
<td>unlimited</td>
<td>unlimited</td>
<td>unlimited</td>
<td>unlimited</td>
</tr>
<tr>
<td>PPPoE tunnels</td>
<td>1</td>
<td>200</td>
<td>200</td>
<td>500</td>
<td>unlimited</td>
</tr>
<tr>
<td>PPTP tunnels</td>
<td>1</td>
<td>200</td>
<td>200</td>
<td>unlimited</td>
<td>unlimited</td>
</tr>
<tr>
<td>L2TP tunnels</td>
<td>1</td>
<td>200</td>
<td>200</td>
<td>unlimited</td>
<td>unlimited</td>
</tr>
<tr>
<td>VLAN interfaces</td>
<td>1</td>
<td>unlimited</td>
<td>unlimited</td>
<td>unlimited</td>
<td>unlimited</td>
</tr>
<tr>
<td>P2P firewall rules</td>
<td>1</td>
<td>unlimited</td>
<td>unlimited</td>
<td>unlimited</td>
<td>unlimited</td>
</tr>
<tr>
<td>NAT rules</td>
<td>1</td>
<td>unlimited</td>
<td>unlimited</td>
<td>unlimited</td>
<td>unlimited</td>
</tr>
<tr>
<td>HotSpot active users</td>
<td>1</td>
<td>1</td>
<td>200</td>
<td>500</td>
<td>unlimited</td>
</tr>
<tr>
<td>RADIUS client</td>
<td>-</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Queues</td>
<td>1</td>
<td>unlimited</td>
<td>unlimited</td>
<td>unlimited</td>
<td>unlimited</td>
</tr>
<tr>
<td>Web proxy</td>
<td>-</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>RIP, OSPF, BGP protocols</td>
<td>-</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Note that **Wireless Client and Bridge** means that wireless cards can be used in **station** and **bridge** modes. **Bridge** mode allows one wireless station to connect it.

When upgrading to 2.8, you can update your existing key for version 2.5, 2.6 or 2.7 for free, if the existing key upgrade term is not over, during the three-day demonstration period either manually on our accounting server or with a console or WinBox command. This three-day term allows you to use all the existing key features present in the previous version. There is also a possibility in 2.8 version to upgrade your key (i.e. to extend licensing term) from the console or WinBox.

Note that the license is kept on hard drive. You can move the hard drive to another system, but you
can not move license on another hard drive. License transfer to another drive is a paid service (unless your hard drive has crashed). Please contact support@mikrotik.com to arrange this. Also note that you must not use MS-DOS format or fdisk utilities or you may lose the license.

Important: the abovementioned limits depict the limits enforced by the license. The actual number of concurrent tunnels, rules, queues, users, etc. will vary depending the combination of features used and the load they place on the MikroTik RouterOS.

License Management

Home menu level: `system license`

Description

There are three methods of entering a key to the system console:

- import a file that should be sent to you after you will require a key (you should upload this file to the router's FTP server)
- simply copy the received key as a text and paste (or type) in to the router's console (no matter in which submenu)

These methods also apply to WinBox, with the difference that key importing and exporting is happening through the Windows host PC itself. The options available:

- **Paste Key** - get a new license from the Windows Clipboard
- **Import Key** - get a new license from a file stored locally on the Windows PC
- **Export Key** - save the existing license as a file on the Windows PC
- **Upgrade/Get New Key** - the same as new-upgrade-key command in system console
- **Update Key** - the same as update-key command in system console

Property Description

- **key** (*read-only: text*) - software license key that unlocks the installation
- **level** (*read-only: integer: 0 ..6*) - license level of the installation
- **software-id** (*read-only: text*) - ID number of the installation
- **upgradable-until** (*read-only: text*) - the date until which the software version can be upgraded or downgraded

Command Description

- **import** - import a key file (*name*) - file name to use as a key
- **new-upgrade-key** - request a new key (*IP address*) - key server's IP address (*text*) - username to log into the key server (*text*) - password to log into the key server (*integer: 2 ..6*) - license level to request (*credit-card | credit-keys | credit-money | debit-keys | debit-money*) - Payment method to use (*text; default: "") - script to execute while the command is running (*time; default: 1s*) - how frequently to execute the given script - if specified, executes the script once, and then terminates the command - command's execution status
 - **Resolving www.mikrotik.com** - resolving DNS name
• Failed to resolve www.mikrotik.com, check your dns settings - check whether DNS client is set up on the router, and that it is allowed to resolve a DNS name on the DNS server set
• Failed to connect, probably no IP address - self-explanatory
• Failed to connect, is your router public? - check whether the router has a default route and is able to reach the key server
• Connecion failed - connection has timed out
• Bad response from server - try again
• ERROR: You don't have appropriate debit key! - no existing debit keys on your account matches the requested one
• ERROR: You don't have enough debit money! - self-explanatory
• ERROR: Credit key limit exceeded! - self-explanatory
• ERROR: Your credit limit is exceeded! - self-explanatory
• ERROR: This payment method is not more allowed! Go to www.mikrotik.com, log on and purchase key there or use other payment methods. - you can not use the selected payment method from the router anymore due to system changes (for credit cards now)
• ERROR: You must enable this feature in account server (change user information section)! - you should enable Allow to use my account in netinstall feature on the account server (in change user information section
• ERROR: Incorrect username or password! - self-explanatory
• ERROR: You are not allowed to use this service! - please contact sales@mikrotik.com for further assistance
• Key upgraded successfully - the upgrade procedure has been completed successfully
output - exports the current key to a key file
update-key - request a free update of your existing key to the version's 2.8 one (this can be done during your existing key upgrade term) (IP address) - key server's IP address (text) - username to log into the key server (text) - password to log into the key server (text ; default: "") - script to execute while the command is running (time ; default: 1s) - how frequently to execute the given script - if specified, executes the script once, and then terminates the command - command's execution status
• Resolving www.mikrotik.com - resolving DNS name
• Failed to resolve www.mikrotik.com, check your dns settings - check whether DNS client is set up on the router, and that it is allowed to resolve a DNS name on the DNS server set
• Failed to connect, probably no IP address - self-explanatory
• Failed to connect, is your router public? - check whether the router has a default route and is able to reach the key server
• Connecion failed - connection has timed out
• Bad response from server - try again
• ERROR: You must enable this feature in account server (change user information section)! - you should enable Allow to use my account in netinstall feature on the account server (in change user information section
• ERROR: Incorrect username or password! - self-explanatory
• ERROR: Someone has already converted this key! - the requested software ID has already been converted to 2.8 version
• **ERROR: Key for specified software ID is expired. You can purchase new key at www.mikrotik.com website!** - you may not update an expired key to the version 2.8, you must purchase a new one

• **ERROR: You are not allowed to use this service!** - please contact sales@mikrotik.com for further assistance

• **Key upgraded successfully** - the upgrade procedure has been completed successfully
Summary

MikroTik RouterOS™ is independent Linux-based Operating System for IA-32 routers and thinrouters. It does not require any additional components and has no software prerequirements. It is designed with easy-to-use yet powerful interface allowing network administrators to deploy network structures and functions, that would require long education elsewhere simply by following the Reference Manual (and even without it).
Related Documents

- Package Management
- Device Driver List
- License Management
- Ping
- Bandwidth Control
- Firewall Filters
- Winbox

Description

MikroTik RouterOS™ turns a standard PC computer into a powerful network router. Just add standard network PC interfaces to expand the router capabilities. Remote control with easy real-time Windows application (WinBox)

- Advanced Quality of Service control with burst support
- Stateful firewall with P2P protocol filtering, tunnels and IPsec
- STP bridging with filtering capabilities
- Super high speed 802.11a/b/g wireless with WEP
- WDS and Virtual AP features
- HotSpot for Plug-and-Play access
- RIP, OSPF, BGP routing protocols
- Gigabit Ethernet ready
- V.35, X.21, T1/E1 synchronous support
- async PPP with RADIUS AAA
- IP Telephony
- remote winbox GUI admin
- telnet/ssh/serial console admin
- real-time configuration and monitoring
- and much more (please see the Specifications Sheet)

The Guide describes the basic steps of installing and configuring a dedicated PC router running MikroTik RouterOS™.

Note: if you have purchased one of the MikroTik wireless kits, or simply as an alternative read this guide too

Setting up MikroTik RouterOS™
Description

Downloading and Installing the MikroTik RouterOS™

The download and installation process of the MikroTik RouterOS™ is described in the following diagram:

1. Download the basic installation archive file.
 Depending on the desired media to be used for installing the MikroTik RouterOS™ please chose one of the following archive types for downloading:
 • **ISO image** - of the installation CD, if you have a CD writer for creating CDs. The ISO image is in the MTcdimage_v2-8-x_dd-mmm-yyyy_(build_z).zip archive file containing a bootable CD image. The CD will be used for booting up the dedicated PC and installing the MikroTik RouterOS™ on its hard-drive or flash-drive.
 • **Netinstall** - if you want to install RouterOS over a LAN with one floppy boot disk, or alternatively using PXE or EtherBoot option supported by some network interface cards, that allows truly networked installation. Netinstall program works on Windows 95/98/NT4/2K/XP.
 • **MikroTik Disk Maker** - if you want to create 3.5" installation floppies. The Disk Maker is a self-extracting archive DiskMaker_v2-8-x_dd-mmm-yyyy_(build_z).exe file, which should be run on your Windows 95/98/NT4/2K/XP workstation to create the installation floppies. The installation floppies will be used for booting up the dedicated PC and installing the MikroTik RouterOS™ on its hard-drive or flash-drive.

2. Create the installation media.
 Use the appropriate installation archive to create the Installation CD or floppies.
 • For the CD, write the ISO image onto a blank CD.
 • For the floppies, run the Disk Maker on your Windows workstation to create the installation floppies. Follow the instructions and insert the floppies in your FDD as requested, label them as Disk 1,2,3, etc.

3. Install the MikroTik RouterOS™ software.
 Your dedicated PC router hardware should have:
 • **CPU and motherboard** - advanced 4th generation (core frequency 100MHz or more), 5th generation (Intel Pentium, Cyrix 6X86, AMD K5 or comparable) or newer uniprocessor Intel IA-32 (i386) compatible (multiple processors are not supported)
 • **RAM** - minimum 64 MB, maximum 1 GB; 64 MB or more recommended
 • **Hard Drive/Flash** - standard ATA interface controller and drive (SCSI and USB controllers and drives are not supported; RAID controllers that require additional drivers are not supported) with minimum of 64 MB space
 Hardware needed for installation time only
 Depending on installation method chosen the router must have the following hardware:
 • **Floppy-based installation** - standard AT floppy controller and 3.5" disk drive connected as the first floppy disk drive (A); AT, PS/2 or USB keyboard; VGA-compatible video controller card and monitor
 • **CD-based installation** - standard ATA/ATAPI interface controller and CD drive supporting "El Torito" bootable CDs (you might need also to check if the router's BIOS supports booting
from this type of media); AT, PS/2 or USB keyboard; VGA-compatible video controller card and monitor

- **Floppy-based network installation** - standard AT floppy controller and 3.5” disk drive connected as the first floppy disk drive (A); PCI Ethernet network interface card supported by MikroTik RouterOS (see the Device Driver List for the list)

- **Full network-based installation** - PCI Ethernet network interface card supported by MikroTik RouterOS (see the Device Driver List for the list) with PXE or EtherBoot extension booting ROM (you might need also to check if the router's BIOS supports booting from network)

Note that if you use Netinstall, you can license the software during the installation procedure (the next point of this section describes how to do it).

Boot up your dedicated PC router from the Installation Media you created and follow the instructions on the console screen while the HDD is reformatted and MikroTik RouterOS installed on it. After successful installation please remove the installation media from your CD or floppy disk drive and hit 'Enter' to reboot the router.

4. License the software.
When booted, the software allows you to use all its features for 24 hours. If the license key will not be entered during this period of time, the router will become unusable, and will need a complete reinstallation.

RouterOS licensing scheme is based on software IDs. To license the software, you must know the software ID. It is shown during installation procedures, and also you can get it from system console or Winbox. To get the software ID from system console, type: `/system license print` (note that you must first log in the router; by default there is user `admin` with no password (just press [Enter] key when prompted for password)). See sections below on basic configuration of your router

Once you have the ID, you can obtain a license:

- You should have an account on our account server. If you do not have an account at www.mikrotik.com, just press the 'New' button on the upper right-hand corner of the MikroTik's web page to create your account

- Choose the appropriate licence level that meets your needs. Please see the License Manual or the Software price list. Note that there is a free license with restricted features (no time limitation)

- There are different methods how to get a license from the account server:
 1. Enter the software ID in the account server, and get the license key by e-mail. You can upload the file received on the router's FTP server, or drag-and-drop it into opened Winbox window
 2. You can open the file with a text editor, and copy the contents. Then paste the text into system console (in any menu - you just should be logged in), or into System->License window of Winbox
 3. If the router has Internet connection, you can obtain the license directly from within it. The commands are described in the License Manual. Note that you must have Allow to use my account in netinstall option enabled for your account. You can set it by following change user information link on the main screen of the account server.
Notes

The hard disk will be entirely reformatted during the installation and all data on it will be lost!

You can move the hard drive with MikroTik RouterOS installed to a new hardware without loosing a license, but you cannot move the RouterOS to a different hard drive without purchasing another license (except hardware failure situations). For additional information write to support@mikrotik.com.

Note! Do not use MS-DOS format command or other disk format utilities to reinstall your MikroTik router! This will cause the Software-ID to change, so you will need to buy another license in order to get MikroTik RouterOS running.

Logging into the MikroTik Router

Description

When logging into the router via terminal console, you will be presented with the MikroTik RouterOS™ login prompt. Use ‘admin’ and no password (hit ‘Enter’) for logging in the router for the first time, for example:

MikroTik v2.8
Login: admin
Password:

The password can be changed with the /password command.

[admin@MikroTik] > password
old password: ************
new password: ************
retype new password: ************
[admin@MikroTik] >

Adding Software Packages

Description

The basic installation comes only with the system package. This includes basic IP routing and router administration. To have additional features such as IP Telephony, OSPF, wireless and so on, you will need to download additional software packages.

The additional software packages should have the same version as the system package. If not, the package won’t be installed. Please consult the MikroTik RouterOS™ Software Package Installation and Upgrading Manual for more detailed information about installing additional software packages.

To upgrade the router packages, simply upload the packages to the router via ftp, using the binary transfer mode. After you have uploaded the packages, reboot the router, and the features that are provided by those packages will be available (regarding your license type, of course).

Navigating The Terminal Console
Description

Welcome Screen and Command Prompt

After logging into the router you will be presented with the MikroTik RouterOS™ Welcome Screen and command prompt, for example:

```
MikroTik RouterOS 2.8 (c) 1999-2004 http://www.mikrotik.com/
```

Terminal xterm detected, using multiline input mode

```
[admin@MikroTik]
```

The command prompt shows the identity name of the router and the current menu level, for example:

```
[admin@MikroTik]
[admin@MikroTik]
[admin@MikroTik]
```

Commands

The list of available commands at any menu level can be obtained by entering the question mark ‘?’

```
[admin@MikroTik]
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>certificate</td>
<td>Certificate management</td>
</tr>
<tr>
<td>driver</td>
<td>Driver management</td>
</tr>
<tr>
<td>file</td>
<td>Local router file storage</td>
</tr>
<tr>
<td>import</td>
<td>Run exported configuration script</td>
</tr>
<tr>
<td>interface</td>
<td>Interface configuration</td>
</tr>
<tr>
<td>log</td>
<td>System logs</td>
</tr>
<tr>
<td>password</td>
<td>Change password</td>
</tr>
<tr>
<td>ping</td>
<td>Send ICMP Echo packets</td>
</tr>
<tr>
<td>port</td>
<td>Serial ports</td>
</tr>
<tr>
<td>quit</td>
<td>Quit console</td>
</tr>
<tr>
<td>radius</td>
<td>Radius client settings</td>
</tr>
<tr>
<td>redo</td>
<td>Redo previously undone action</td>
</tr>
<tr>
<td>setup</td>
<td>Do basic setup of system</td>
</tr>
<tr>
<td>snmp</td>
<td>SNMP settings</td>
</tr>
<tr>
<td>special-login</td>
<td>Special login users</td>
</tr>
<tr>
<td>undo</td>
<td>Undo previous action</td>
</tr>
<tr>
<td>user</td>
<td>User management</td>
</tr>
<tr>
<td>ip</td>
<td>IP options</td>
</tr>
<tr>
<td>queue</td>
<td>Bandwidth management</td>
</tr>
<tr>
<td>system</td>
<td>System information and utilities</td>
</tr>
<tr>
<td>tool</td>
<td>Diagnostics tools</td>
</tr>
<tr>
<td>export</td>
<td>Print or save an export script that can be used to restore</td>
</tr>
<tr>
<td></td>
<td>configuration</td>
</tr>
</tbody>
</table>

```
[admin@MikroTik]
```
The list of available commands and menus has short descriptions next to the items. You can move to the desired menu level by typing its name and hitting the [Enter] key, for example:

A command or an argument does not need to be completed, if it is not ambiguous. For example, instead of typing `interface` you can type just `in` or `int`. To complete a command use the [Tab] key.

The commands may be invoked from the menu level, where they are located, by typing its name. If the command is in a different menu level than the current one, then the command should be invoked using its full (absolute) or relative path, for example:

The commands may have arguments. The arguments have their names and values. Some commands, may have a required argument that has no name.

Summary on executing the commands and navigating the menus

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>command [Enter]</td>
<td>Executes the command</td>
</tr>
<tr>
<td>command []</td>
<td>Shows the list of all available commands</td>
</tr>
<tr>
<td>command argument []</td>
<td>Displays help on the command's argument</td>
</tr>
<tr>
<td>[Tab]</td>
<td>Completes the command/word. If the input is</td>
</tr>
</tbody>
</table>

[Tab]
ambiguous, a second [Tab] gives possible options

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>Moves up to the base level</td>
</tr>
<tr>
<td>/command</td>
<td>Executes the base level command</td>
</tr>
<tr>
<td>..</td>
<td>Moves up one level</td>
</tr>
<tr>
<td>""""</td>
<td>Specifies an empty string</td>
</tr>
<tr>
<td>"word1 word2"</td>
<td>Specifies a string of 2 words that contain a space</td>
</tr>
</tbody>
</table>

You can abbreviate names of levels, commands and arguments.

For the IP address configuration, instead of using the 'address' and 'netmask' arguments, in most cases you can specify the address together with the number of true bits in the network mask, i.e., there is no need to specify the 'netmask' separately. Thus, the following two entries would be equivalent:

```
/ip address add address 10.0.0.1/24 interface ether1
/ip address add address 10.0.0.1 netmask 255.255.255.0 interface ether1
```

Notes

You must specify the size of the network mask in the address argument, even if it is the 32-bit subnet, i.e., use `10.0.0.1/32` for `address=10.0.0.1 netmask=255.255.255.255`

Basic Configuration Tasks

Description

Interface Management

Before configuring the IP addresses and routes please check the `/interface` menu to see the list of available interfaces. If you have Plug-and-Play cards installed in the router, it is most likely that the device drivers have been loaded for them automatically, and the relevant interfaces appear on the `/interface print` list, for example:

```
[admin@MikroTik] interface> print
Flags: X - disabled, D - dynamic, R - running
#  NAME  TYPE RX-RATE TX-RATE MTU
 0  ether1 ether 0 0 1500
 1  ether2 ether 0 0 1500
 2  wavelan1 wlan 0 0 1500
 3  prism1 wlan 0 0 1500
[admin@MikroTik] interface>
```

The interfaces need to be enabled, if you want to use them for communications. Use the `/interface enable name` command to enable the interface with a given name or number, for example:

```
[admin@MikroTik] interface> print
Flags: X - disabled, D - dynamic, R - running
#  NAME  TYPE RX-RATE TX-RATE MTU
 0  ether1 ether 0 0 1500
 1  ether2 ether 0 0 1500
```
The interface name can be changed to a more descriptive one by using `/interface set` command:

```
[admin@MikroTik] interface> set 0 name=Local; set 1 name=Public
[admin@MikroTik] interface> print
Flags: X - disabled, D - dynamic, R - running
# NAME TYPE RX-RATE TX-RATE MTU
 0 R Local ether 0 0 1500
 1 R Public ether 0 0 1500
[admin@MikroTik] interface>
```

Notes

The device drivers for NE2000 compatible ISA cards need to be loaded using the `add` command under the `/drivers` menu. For example, to load the driver for a card with IO address 0x280 and IRQ 5, it is enough to issue the command:

```
[admin@MikroTik] driver> add name=ne2k-isa io=0x280
[admin@MikroTik] driver> print
Flags: I - invalid, D - dynamic
# DRIVER IRQ IO MEMORY ISDN-PROTOCOL
 0 D RealTek 8139
 1 D Intel EtherExpressPro
 2 D PCI NE2000
 3 ISA NE2000 280
 4 Moxa C101 Synchronous C8000
[admin@MikroTik] driver>
```

There are some other drivers that should be added manually. Please refer to the respective manual sections for the detailed information on how drivers are to be loaded.

Setup Command

Command name: `/setup`

Description

The initial setup of the router can be done by using the `/setup` command which offers the following configuration:

- reset all router configuration
- load interface driver
- configure ip address and gateway
- setup dhcp client
- setup dhcp server
- setup pppoe client
- setup pptp client
Configure IP address on router, using the Setup command

Execute the /setup command from command line:

```
[admin@MikroTik] > setup

Setup uses Safe Mode. It means that all changes that are made during setup are reverted in case of error, or if Ctrl-C is used to abort setup. To keep changes exit setup using the 'x' key.

[Safe Mode taken]

Choose options by pressing one of the letters in the left column, before dash. Pressing 'x' will exit current menu, pressing Enter key will select the entry that is marked by an '*'. You can abort setup at any time by pressing Ctrl-C. Entries marked by '+' are already configured. Entries marked by '-' cannot be used yet.

Entries marked by 'X' cannot be used without installing additional packages.

r - reset all router configuration
+ l - load interface driver
* a - configure ip address and gateway
d - setup dhcp client
s - setup dhcp server
p - setup pppoe client
t - setup pptp client
x - exit menu

your choice [press Enter to configure ip address and gateway]: a
```

To configure IP address and gateway, press a or [Enter], if the a choice is marked with an asterisk symbol ('*').

```
* a - add ip address
- g - setup default gateway
x - exit menu

your choice [press Enter to add ip address]: a
```

Choose a to add an IP address. At first, setup will ask you for an interface to which the address will be assigned. If the setup offers you an undesirable interface, erase this choice, and press the [Tab] key twice to see all available interfaces. After the interface is chosen, assign IP address and network mask on it:

```
your choice: a
enable interface:
ether1 ether2 wlan1
enable interface: ether1
ip address/netmask: 10.1.0.66/24
#Enabling interface
/interface enable ether1
#Adding IP address
/ip address add address=10.1.0.66/24 interface=ether1 comment="added by setup"

* g - setup default gateway
x - exit menu

your choice: x
```

Basic Examples

Example

Assume you need to configure the MikroTik router for the following network setup:

In the current example we use two networks:
• The local LAN with network address 192.168.0.0 and 24-bit netmask: 255.255.255.0. The router's address is 192.168.0.254 in this network
• The ISP's network with address 10.0.0.0 and 24-bit netmask 255.255.255.0. The router's address is 10.0.0.217 in this network

The addresses can be added and viewed using the following commands:

```
[admin@MikroTik] ip address> add address 10.0.0.217/24 interface Public
[admin@MikroTik] ip address> add address 192.168.0.254/24 interface Local
[admin@MikroTik] ip address> print
Flags: X - disabled, I - invalid, D - dynamic
# ADDRESS NETWORK BROADCAST INTERFACE
0 10.0.0.217/24 10.0.0.217 10.0.0.255 Public
1 192.168.0.254/24 192.168.0.0 192.168.0.255 Local
```

Here, the network mask has been specified in the value of the address argument. Alternatively, the argument 'netmask' could have been used with the value '255.255.255.0'. The network and broadcast addresses were not specified in the input since they could be calculated automatically.

Please note that the addresses assigned to different interfaces of the router should belong to different networks.

Viewing Routes

You can see two dynamic (D) and connected (C) routes, which have been added automatically when the addresses were added in the example above:

```
[admin@MikroTik] ip route> print
Flags: X - disabled, I - invalid, D - dynamic, J - rejected,
C - connect, S - static, R - rip, O - ospf, B - bgp
# DST-ADDRESS G GATEWAY DISTANCE INTERFACE
0 DC 192.168.0.0/24 r 0.0.0.0 0 Local
1 DC 10.0.0.0/24 r 0.0.0.0 0 Public
[admin@MikroTik] ip route> print detail
Flags: X - disabled, I - invalid, D - dynamic, J - rejected,
C - connect, S - static, R - rip, O - ospf, B - bgp
0 DC dst-address=192.168.0.0/24 preferred-source=192.168.0.254
gateway=0.0.0.0 gateway-statereachable distance=0 interface=Local
1 DC dst-address=10.0.0.0/24 preferred-source=10.0.0.217 gateway=0.0.0.0
gateway-statereachable distance=0 interface=Public
```

These routes show, that IP packets with destination to 10.0.0.0/24 would be sent through the interface Public, whereas IP packets with destination to 192.168.0.0/24 would be sent through the interface Local. However, you need to specify where the router should forward packets, which have destination other than networks connected directly to the router.

Adding Default Routes

In the following example the default route (destination 0.0.0.0 (any), netmask 0.0.0.0 (any)) will be added. In this case it is the ISP's gateway 10.0.0.1, which can be reached through the interface Public

```
[admin@MikroTik] ip route> add gateway=10.0.0.1
[admin@MikroTik] ip route> print
Flags: X - disabled, I - invalid, D - dynamic, J - rejected,
C - connect, S - static, R - rip, O - ospf, B - bgp
```
Here, the default route is listed under #0. As we see, the gateway 10.0.0.1 can be reached through the interface 'Public'. If the gateway was specified incorrectly, the value for the argument 'interface' would be unknown.

Notes

You cannot add two routes to the same destination, i.e., destination-address/netmask! It applies to the default routes as well. Instead, you can enter multiple gateways for one destination. For more information on IP routes, please read the Routes, Equal Cost Multipath Routing, Policy Routing manual.

If you have added an unwanted static route accidentally, use the remove command to delete the unneeded one. You will not be able to delete dynamic (DC) routes. They are added automatically and represent routes to the networks the router connected directly.

Testing the Network Connectivity

From now on, the /ping command can be used to test the network connectivity on both interfaces. You can reach any host on both connected networks from the router.

How the /ping command works:

```
[admin@MikroTik] ip route> /ping 10.0.0.4
10.0.0.4 64 byte ping: ttl=255 time=7 ms
10.0.0.4 64 byte ping: ttl=255 time=5 ms
10.0.0.4 64 byte ping: ttl=255 time=5 ms
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 5/5.6/7 ms
```

```
[admin@MikroTik] ip route> /ping 192.168.0.1
192.168.0.1 64 byte ping: ttl=255 time=1 ms
192.168.0.1 64 byte ping: ttl=255 time=1 ms
192.168.0.1 64 byte ping: ttl=255 time=1 ms
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 1/1.0/1 ms
```

The workstation and the laptop can reach (ping) the router at its local address 192.168.0.254, If the router's address 192.168.0.254 is specified as the default gateway in the TCP/IP configuration of both the workstation and the laptop, then you should be able to ping the router:

```
C:\>ping 192.168.0.254
Reply from 192.168.0.254: bytes=32 time=10ms TTL=253
Reply from 192.168.0.254: bytes=32 time<10ms TTL=253
Reply from 192.168.0.254: bytes=32 time<10ms TTL=253
C:\>ping 10.0.0.217
Reply from 10.0.0.217: bytes=32 time=10ms TTL=253
Reply from 10.0.0.217: bytes=32 time<10ms TTL=253
Reply from 10.0.0.217: bytes=32 time<10ms TTL=253
C:\>ping 10.0.0.4
Request timed out.
Request timed out.
Request timed out.
```

Notes
You cannot access anything beyond the router (network 10.0.0.0/24 and the Internet), unless you do the one of the following:

- Use source network address translation (masquerading) on the MikroTik router to 'hide' your private LAN 192.168.0.0/24 (see the information below), or
- Add a static route on the ISP's gateway 10.0.0.1, which specifies the host 10.0.0.217 as the gateway to network 192.168.0.0/24. Then all hosts on the ISP's network, including the server, will be able to communicate with the hosts on the LAN.

To set up routing, it is required that you have some knowledge of configuring TCP/IP networks. There is a comprehensive list of IP resources compiled by Uri Raz at http://www.private.org.il/tcpip_rl.html. We strongly recommend that you obtain more knowledge, if you have difficulties configuring your network setups.

Advanced Configuration Tasks

Description

Next will be discussed situation with 'hiding' the private LAN 192.168.0.0/24 'behind' one address 10.0.0.217 given to you by the ISP.

Application Example with Masquerading

If you want to 'hide' the private LAN 192.168.0.0/24 'behind' one address 10.0.0.217 given to you by the ISP, you should use the source network address translation (masquerading) feature of the MikroTik router. Masquerading is useful, if you want to access the ISP's network and the Internet appearing as all requests coming from the host 10.0.0.217 of the ISP's network. The masquerading will change the source IP address and port of the packets originated from the network 192.168.0.0/24 to the address 10.0.0.217 of the router when the packet is routed through it.

Masquerading conserves the number of global IP addresses required and it lets the whole network use a single IP address in its communication with the world.

To use masquerading, a source NAT rule with action 'masquerade' should be added to the firewall configuration:

```
[admin@MikroTik] ip firewall src-nat> add action=masquerade out-interface=Public
[admin@MikroTik] ip firewall src-nat> print
Flags: X - disabled, I - invalid, D - dynamic
  0 out-interface=Public action=masquerade src-address=192.168.0.0/24
[admin@MikroTik] ip firewall src-nat>
```

Notes

Please consult [Network Address Translation](http://www.private.org.il/tcpip_rl.html) for more information on masquerading.

Example with Bandwidth Management

Assume you want to limit the bandwidth to 128kbps on downloads and 64kbps on uploads for all hosts on the LAN. Bandwidth limitation is done by applying queues for outgoing interfaces regarding the traffic flow. It is enough to add a single queue at the MikroTik router:

```
[admin@MikroTik] ip firewall src-nat> add action=masquerade out-interface=Public
[admin@MikroTik] ip firewall src-nat> print
Flags: X - disabled, I - invalid, D - dynamic
  0 out-interface=Public action=masquerade src-address=192.168.0.0/24
[admin@MikroTik] ip firewall src-nat>
```
Leave all other parameters as set by default. The limit is approximately 128kbps going to the LAN (download) and 64kbps leaving the client's LAN (upload).

Example with NAT

Assume we have moved the server in our previous examples from the public network to our local one:

The server's address is now 192.168.0.4, and we are running web server on it that listens to the TCP port 80. We want to make it accessible from the Internet at address:port 10.0.0.217:80. This can be done by means of Static Network Address translation (NAT) at the MikroTik Router. The Public address:port 10.0.0.217:80 will be translated to the Local address:port 192.168.0.4:80. One destination NAT rule is required for translating the destination address and port:

```
[admin@MikroTik] ip firewall dst-nat> add action=nat protocol=tcp \
    dst-address=10.0.0.217/32:80 to-dst-address=192.168.0.4
[admin@MikroTik] ip firewall dst-nat> print
  Flags: X - disabled, I - invalid, D - dynamic
  0    dst-address=10.0.0.217/32:80 protocol=tcp action=nat
      to-dst-address=192.168.0.4
[admin@MikroTik] ip firewall dst-nat>
```

Notes

Please consult [Network Address Translation](#) for more information on Network Address Translation.
Installing RouterOS with CD-Install

Document revision 1.3 (Tue Jan 18 13:29:00 GMT 2005)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
CD-Install
 Description

CD-Install

Description

To install the RouterOS using a CD you will need a CD-writer and a blank CD. The archive with ROuterOS image can be downloaded here.

Follow the instructions to install RouterOS using CD-Install:

1. After downloading the CD image from www.mikrotik.com you will have one ZIP file on your computer:

2. Extract *.iso image from downloaded *.zip file:
3. You will see that the utility has extracted two files, the License and the ISO file:

```
MTcdimage_v2.8.22_27-dec-2004_(build_2).zip
LICENSE.txt
mikrotik-2.8.22.iso
```

4. Open a CD Writing software, like Ahead NERO as in this example:
5. In the program, choose **Burn Image** entry from the **Recorder** menu (there should be similary named option in all major CD burning programs):

![Burn Image entry from the Recorder menu](image)

6. Select the recently extracted ISO file and click **Open**:

![Select the recently extracted ISO file and click Open](image)
7. Finally, click **Burn** button:

8. Set the first boot device to CDROM in router's BIOS.

9. After booting from the CD you will see a menu where to choose packages to install:

 Welcome to MikroTik Router Software installation
 Move around menu using 'p' and 'n' or arrow keys, select with 'spacebar'.
Select all with 'a', minimum with 'm'. Press 'i' to install locally or 'r' to install remote router or 'q' to cancel and reboot.

[X] system [] isdn [] synchronous
[X] ppp [] lcd [] telephony
[X] dhcp [] ntp [] ups
[X] advanced-tools [] radiolan [] web-proxy
[] arlan [] rouerboard [] wireless
[] gps [X] routing
[] hotspot [X] security

Follow the instructions, select needed packages, and press 'i' to install the software.

10. You will be asked for 2 questions:

Warning: all data on the disk will be erased!

Continue? [y/n]

Press 'y' to continue or 'n' to abort the installation.

Do you want to keep old configuration? [y/n]:

You have to choose whether to press 'y' and save old configuration or press 'n' and continue without saving it. For a fresh installation, press 'n'.

Creating partition...
Formatting disk...

The system will install selected packages. After that you will be prompted to press 'Enter'. Before doing that, remove the CD from your CD-Drive:

Software installed.
Press ENTER to reboot

Note: after the installation you will have to enter the Software key. See this manual how to do it.
Installing RouterOS with Floppies

Document revision 1.2 (Tue Jul 13 13:06:16 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Floppy Install
 Description

Floppy Install

Description

Another chance to install the RouterOS is using floppies. You will need approximately 9 floppies to install the software (this includes only the system package).

1. Download the archive here. Extract it and run FloppyMaker.exe.
 Read the licence agreement and press 'Yes' to continue.

2. After pressing 'Yes', you are introduced to useful information about RouterOS:
 Press 'Continue' button to continue or 'Exit' to leave the installation.

3. You are prompted to insert disk #1 into the floppy drive:
 Insert a blank floppy into the drive and start the copying process. Pressing 'Skip Floppy' will skip the process to next floppy (useful in case you already have some floppies copied).
 Proceed with next floppies until the following dialog occurs:

4. Set the dedicated computer to boot from floppy device, insert the disk #1 and boot the computer. When it will process the first floppy, it will ask for the second, until all floppies are processed.

Note: after the installation you will have to enter the Software key. See this manual how to do it.
Installing RouterOS with NetInstall

This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
NetInstall
 Description

NetInstall

Description

NetInstall is a program that allows you to install MikroTIK RouterOS on a dedicated PC or RouterBoard via Ethernet network. All you need is a blank floppy or an Ethernet device that supports PXE, an Ethernet network between workstation and dedicated computer, and a serial null-modem console cable (for RouterBoard 200).

NetInstall Program Parameters

The program runs on Windows 95/98/ME/NT/2000/XP platforms.

Netinstall parameters:

- **Routers/Drives** - in this list you can see all the devices waiting for installation.
- **Software ID** - a unique ID that is generated for licensing purposes.
- **Key** - a key that is generated for the Software ID. When you purchase a license, you get a **key** file. Click the **Browse...** button next to the **key** field to select your **key** file.
- **Get Key...** - obtain software key from MikroTIK server:
 - **Software ID** - ID for which the key will be generated (depending on the license level).
 - **Username** - client's username in the Account database.
 - **Password** - client's password.
 - **Level** - license level of RouterOS.
 - **Debit key** - a key that you have paid for, but haven't generated yet.
 - **Debit money** - money that you have on your account. To add money to your account, use the 'add debit' link in the account server.
 - **Credit key** - a key that you can take now, but pay later.
 - **Credit money** - paying with credit money allows you to get your keys now and pay for them later.
- **Keep old configuration** - used for reinstalling the software. If checked, the old configuration on the router will not be overwritten, otherwise it will be lost.
• **IP address/mask** - address with subnet mask that will be assigned to ether1 interface after the packages are installed.

• **Gateway** - specifies the default gateway (static route).

• **Baud rate** - this baud rate will be set for serial console (bps).

• **Configure script** - a RouterOS script to execute after the package installation.

• **Make floppy** - make a bootable NetInstall floppy.

• **Net booting** - opens the Network Booting Settings window. Enter an IP address from your local network. This address will be temporarily assigned to the computer where RouterOS will be installed on.

• **Install** - installs the RouterOS on a computer.

• **Cancel** - cancel the installation.

• **Sets** - an entry in this list represents the choice of packages selected to install from a directory. If you want to make your own set, browse for a folder that contains packages (*.npk files), select needed packages in the list, and press the **Save set** button.

• **From** - type the directory where your packages are stored or press the **Browse**... button to select the directory.

• **Select all** - selects all packages in the list

• **Select none** - unselects all packages in the list

Note: some of the **Get key**... parameters could not be available for all account types.

NetInstall Example

This example shows step-by-step instruction how to install the software on a RouterBoard 200.

1. Connect the routerboard to a switch (or a hub) as it is shown in the diagram using ether1 interface (on RouterBoard 230 it is next to the RS-232 interface):

2. Run NetInstall program on your workstation (you can download it [here](#)). It is necessary to extract the packages (*.npk files) on your hard drive.

3. Enter the Boot Server Client's IP address. Use an address from a network to which belongs your NIC (in this case **172.16.0.0/24**). This IP address will be temporarily assigned to the routerboard.

4. Set the RouterBoard to boot from Ethernet interface. To do this, enter the RouterBoard BIOS (press any key when prompted):

   ```
   RouterBIOS v1.3.0 MikroTik (tm) 2003-2004
   RouterBOARD 230 (CPU revision B1)
   CPU frequency: 266 MHz
   Memory size: 64 MB
   Press any key within 1 second to enter setup.
   ```

 You will see a list of available commands. To set up the boot device, press the 'o' key:

   ```
   RouterBIOS v1.3.0
   What do you want to configure?
   ```
Press the 'e' key to make the RouterBoard to boot from Ethernet interface:

Select boot device:
* i - IDE
 e - Etherboot
1 - Etherboot (timeout 15s), IDE
2 - Etherboot (timeout 1m), IDE
3 - Etherboot (timeout 5m), IDE
4 - Etherboot (timeout 30m), IDE
5 - IDE, try Etherboot first on next boot (15s)
6 - IDE, try Etherboot first on next boot (1m)
7 - IDE, try Etherboot first on next boot (5m)
8 - IDE, try Etherboot first on next boot (30m)

When this is done, the RouterBoard BIOS will return to the first menu. Press the 'x' key to exit from BIOS. The router will reboot.

5. When booting up, the RouterBoard will try to boot from its Ethernet device. If successful, the Workstation will give to this RouterBoard an IP address, specified in Network Booting Settings. After this process, the RouterBoard will be waiting for installation.

 On the workstation, there will appear a new entry in Routers/Drives list: You can identify the router by MAC address in the list. Click on the desired entry and you will be able to configure installation parameters . When done, press the Install button to install RouterOS.

6. When the installation process has finished, press 'Enter' on the console or 'Reboot' button in the NetInstall program. Remember to set the boot device back to IDE in the RouterBoard BIOS.
Configuration Management

Document revision 1.3 (Mon Jul 26 07:40:46 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
 Summary
 Description
System Backup
 Description
 Command Description
 Example
 Example
The Export Command
 Description
 Command Description
 Example
The Import Command
 Description
 Command Description
 Example
Configuration Reset
 Description
 Property Description
 Command Description
 Example

General Information

Summary

This manual introduces you with commands which are used to perform the following functions:

- system backup
- system restore from a backup
- configuration export
- configuration import
- system configuration reset

Description

The configuration backup can be used for backing up MikroTik RouterOS configuration to a binary file, which can be stored on the router or downloaded from it using FTP. The configuration restore can be used for restoring the router's configuration from a backup file.
The configuration export can be used for dumping out MikroTik RouterOS configuration to the console screen or to a text (script) file, which can be downloaded from the router using FTP. The configuration import can be used to import the router configuration script from a text file.

System reset command is used to erase all configuration on the router. Before doing that, it might be useful to backup the router's configuration.

Note! In order to be sure that the backup will not fail, `system backup load` command must be used on the same computer with the same hardware where `system backup save` was done.

System Backup

Home menu level: `/system backup`

Description

The `save` command is used to store the entire router configuration in a backup file. The file is shown in the `/file` submenu. It can be downloaded via ftp to keep it as a backup for your configuration.

To restore the system configuration, for example, after a `/system reset`, it is possible to upload that file via ftp and load that backup file using `load` command in `/system backup` submenu.

Command Description

`load name=[filename]` - Load configuration backup from a file
`save name=[filename]` - Save configuration backup to a file

Example

To save the router configuration to file `test`:

```
[admin@MikroTik] system backup> save name=test
Configuration backup saved
[admin@MikroTik] system backup>
```

To see the files stored on the router:

```
[admin@MikroTik] > file print
# NAME TYPE SIZE CREATION-TIME
 0 test.backup backup 12567 aug/12/2002 21:07:50
[admin@MikroTik] >
```

Example

To load the saved backup file `test`:

```
[admin@MikroTik] system backup> load name=test
Restore and reboot? [y/N]: y
...
```

The Export Command

Command name: `export`
Description

The `export` command prints a script that can be used to restore configuration. The command can be invoked at any menu level, and it acts for that menu level and all menu levels below it. If the argument `from` is used, then it is possible to export only specified items. In this case `export` does not descend recursively through the command hierarchy. `export` also has the argument `file`, which allows you to save the script in a file on the router to retrieve it later via FTP.

Command Description

`from=[number]` - specifies from which item to start to generate the export file
`file=[filename]` - saves the export to a file

Example

```bash
[admin@MikroTik] > ip address print
Flags: X - disabled, I - invalid, D - dynamic
# ADDRESS    NETWORK   BROADCAST INTERFACE
 0 10.1.0.172/24 10.1.0.0 10.1.0.255 bridge1
 1 10.5.1.1/24  10.5.1.0  10.5.1.255  ether1
```

To make an export file:

```bash
[admin@MikroTik] ip address> export file=address
[admin@MikroTik] ip address>
```

To make an export file from only one item:

```bash
[admin@MikroTik] ip address> export file=address1 from=1
[admin@MikroTik] ip address>
```

To see the files stored on the router:

```bash
[admin@MikroTik] > file print
# NAME TYPE SIZE CREATION-TIME
 0 address.rsc script 315 dec/23/2003 13:21:48
 1 address1.rsc script 201 dec/23/2003 13:22:57
```

To export the setting on the display use the same command without the `file` argument:

```bash
[admin@MikroTik] ip address> export from=0,1
# dec/23/2003 13:25:30 by RouterOS 2.8beta12
# software id = MGJ4-MAN
# / ip address
add address=10.1.0.172/24 network=10.1.0.0 broadcast=10.1.0.255 \
  interface=bridge1 comment="" disabled=no
add address=10.5.1.1/24 network=10.5.1.0 broadcast=10.5.1.255 \
  interface=ether1 comment="" disabled=no
```

The Import Command

Description
The root level command `/import file_name` restores the exported information from the specified file. This is used to restore configuration or part of it after a `/system reset` event or anything that causes configuration data loss.

Note that it is impossible to import the whole router configuration using this feature. It can only be used to import a part of configuration (for example, firewall rules) in order to spare you some typing.

Command Description

file=[filename] - loads the exported configuration from a file to router

Example

To load the saved export file use the following command:

```
[admin@MikroTik] > import address.rsc
Opening script file address.rsc
Script file loaded successfully
[admin@MikroTik] >
```

Configuration Reset

Home menu level: /system

Description

The command clears all configuration of the router and sets it to the default including the login name and password ('admin' and no password), IP addresses and other configuration is erased, interfaces will become disabled. After the `reset` command router will reboot.

Property Description

`keep-user-config` (yes | no; default: **no**) - whether to keep entries in '/user' list or not

Command Description

`reset` - erases router's configuration

Example

```
[admin@MikroTik] > system reset
Dangerous! Reset anyway? [y/N]: n
action cancelled
[admin@MikroTik] >
```
FTP (File Transfer Protocol) Server

Document revision 2.2 (Tue Apr 06 13:25:13 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents
Table of Contents
Summary
Specifications
Related Documents
File Transfer Protocol Server
 Description
 Property Description
 Command Description

General Information

Summary

MikroTik RouterOS implements File Transfer Protocol (FTP) server feature. It is intended to use for software packages uploading as well as configuration script exporting and importing procedures.

Specifications

Packages required: system
License required: level1
Home menu level: /file
Standards and Technologies: FTP (RFC 959)
Hardware usage: Not significant

Related Documents

- Package Management
- Configuration Export and Import
- Configuration Backup and Restore

File Transfer Protocol Server

Home menu level: /file

Description

MikroTik RouterOS has an industry standard FTP server feature. It uses ports 20 and 21 for communication with other hosts on the network. Do not disable these ports on your router!

Uploaded files as well as exported configuration or backup files can be accessed under /file menu.
There you can delete unnecessary files from your router.

Authorization via ftp uses router's system user account names and passwords.

Property Description

- **name** *(read-only: name)* - item name
- **type** *(read-only: file | directory | unknown | script | package | backup)* - item type
- **size** *(read-only: integer)* - package size in bytes
- **creation-time** *(read-only: time)* - item creation date and time

Command Description

- **print** - shows a list of files stored - shows contents of files less that 4kb long - offers to edit file's contents with editor - sets the file's contents to 'content'
MAC Telnet Server and Client

Document revision 2.0 (Fri Mar 05 09:01:27 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Summary
Specifications
Related Documents
MAC Telnet Server
 Property Description
 Notes
 Example
Monitoring Active Session List
 Property Description
MAC Telnet Client
 Example

General Information

Summary
MAC telnet is used to provide access to a router that has no IP address set. It works just like IP telnet. MAC telnet is possible between two MikroTik RouterOS routers only.

Specifications

Packages required: system
License required: level1
Home menu level: /tool, /tool mac-server
Standards and Technologies: MAC Telnet
Hardware usage: Not significant

Related Documents

- Package Management
- Ping
- MNDP

MAC Telnet Server

Home menu level: /tool mac-server

Property Description
interface (name | all ; default: all) - interface name to which the mac-server clients will connect
 • all - all interfaces

Notes

There is an interface list in configured in the submenu level. If you add some interfaces to this list, you allow MAC telnet to that interface. Disabled (disabled=yes) item means that interface in not in the list rather than that MAC telnet is disabled on that interface.

Example

To enable MAC telnet server on ether1 interface only:

```
[admin@MikroTik] tool mac-server> print
Flags: X - disabled
  # INTERFACE
  0  all
[admin@MikroTik] tool mac-server> remove 0
[admin@MikroTik] tool mac-server> add interface=ether1 disabled=no
[admin@MikroTik] tool mac-server> print
Flags: X - disabled
  # INTERFACE
  0  ether1
[admin@MikroTik] tool mac-server>
```

Monitoring Active Session List

Home menu level: /tool mac-server sessions

Property Description

interface (read-only: name) - interface the client is connected to
src-address (read-only: MAC address) - client's MAC address
uptime (read-only: time) - how long the client is connected to the server

MAC Telnet Client

Command name: /tool mac-telnet

Example

```
[admin@MikroTik] tool> mac-telnet "00:40:63:C1:23:C4"
Login: admin
Password:
Trying 00:40:63:C1:23:C4...
Connected to 00:40:63:C1:23:C4

MikroTik RouterOS v2.7 (c) 1999-2003 http://www.mikrotik.com/
Terminal linux detected, using multiline input mode
[admin@10.5.7.1] >
```

Copyright 1999-2005, MikroTik. All rights reserved. Mikrotik, RouterOS and RouterBOARD are trademarks of Mikrotikls SIA.
Other trademarks and registred trademarks mentioned herein are properties of their respective owners.
Serial Console and Terminal

Summary

The Serial Console and Terminal are tools, used to communicate with devices and other systems that are interconnected via serial port. The serial terminal may be used to monitor and configure many devices - including modems, network devices (including MikroTik routers), and any device that can be connected to a serial (asynchronous) port.

Specifications

Packages required: system
License required: level1
Home menu level: /system
Standards and Technologies: RS-232
Hardware usage: Not significant

Related Documents

- Package Management

Additional Documents

Description

The Serial Console (managed side) feature allows configuring one serial port of the MikroTik router for access to the router’s Terminal Console over the serial port. A special null-modem cable is required to connect the router’s serial port with the workstation’s or laptop’s serial (COM) port. A terminal emulation program, e.g., HyperTerminal, should be run on the workstation. You can also use MikroTik RouterOS to connect to an another Serial Console (for example, on a Cisco router).

Several customers have described situations where the Serial Terminal (managing side) feature would be useful:

- in a mountaintop where a MikroTik wireless installation sits next to equipment (including switches and Cisco routers) that can not be managed in-band (by telnet through an IP network)
- monitoring weather-reporting equipment through a serial-console
- connection to a high-speed microwave modem that needed to be monitored and managed by a serial-console connection

With the serial-terminal feature of the MikroTik, up to 132 (and, maybe, even more) devices can be monitored and controlled

Serial Console Configuration

Description

A special null-modem cable should be used for connecting to the serial console. The Serial Console cabling diagram for DB9 connectors is as follows:

<table>
<thead>
<tr>
<th>Router Side (DB9f)</th>
<th>Signal</th>
<th>Direction</th>
<th>Side (DB9f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 6</td>
<td>CD, DSR</td>
<td>IN</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>RxD</td>
<td>IN</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>TxD</td>
<td>OUT</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>DTR</td>
<td>OUT</td>
<td>1, 6</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>RTS</td>
<td>OUT</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>CTS</td>
<td>IN</td>
<td>7</td>
</tr>
</tbody>
</table>

Setting Serial Console

Home menu level: /system serial-console

Property Description

enabled (yes | no ; default: yes) - whether serial console is enabled or not. By default, e.g. after the
installation, the console is enabled and you can connect to the router using null-modem serial cable

port (name; default: serial0) - which port should the serial terminal listen to

Example

To enable Serial Console:

```
[admin@MikroTik] system serial-console> set enabled=yes
[admin@MikroTik] system serial-console> print
   enabled: yes
   port: serial0
[admin@MikroTik] system serial-console>
```

To check if the port is available or used:

```
[admin@MikroTik] system serial-console> /port print detail
   0 name=serial0 used-by=Serial Console baud-rate=9600 data-bits=8 parity=None
      stop-bits=1 flow-control=None
   1 name=serial1 used-by="" baud-rate=9600 data-bits=8 parity=None stop-bits=1
      flow-control=None
[admin@MikroTik] system serial-console>
```

Using Serial Terminal

Command name: `/system serial-terminal`

Description

The command is used to communicate with devices and other systems that are connected to router via serial port.

All keyboard input is forwarded to the serial port and all data from the port is output to the connected device. After exiting with [Ctrl]+[Q], the control signals of the port are lowered. The speed and other parameters of serial port may be configured in the `/port` directory of router console. No terminal translation on printed data is performed. It is possible to get the terminal in an unusable state by outputting sequences of inappropriate control characters or random data. Do not connect to devices at an incorrect speed and avoid dumping binary data.

Property Description

port (name) - port name to use

Notes

[Ctrl]+[Q] and [Ctrl]+[X] have special meaning and are used to provide a possibility of exiting from nested serial-terminal sessions:

To send [Ctrl]+[X] to to serial port, press [Ctrl]+[X] [Ctrl]+[X]

To send [Ctrl]+[Q] to to serial port, press [Ctrl]+[X] [Ctrl]+[Q]

Example
To connect to a device connected to the `serial1` port:

```
[admin@MikroTik] system> serial-terminal serial1
[Type Ctrl-Q to return to console]
[Ctrl-X is the prefix key]
```
Package Management

Document revision 1.2 (Thu Dec 02 12:56:28 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
 Summary
 Related Documents
 Description
Installation (Upgrade)
 Description
 Notes
Uninstalling
 Description
 Property Description
 Notes
 Example
Downgrading
 Description
 Command Description
 Example
Software Package List
 Description

General Information

Summary

The MikroTik RouterOS is distributed in the form of software packages. The basic functionality of the router and the operating system itself is provided by the system software package. Other packages contain additional software features as well as support to various network interface cards.

Specifications

License required: level1
Home menu level: /system package
Standards and Technologies: FTP
Hardware usage: Not significant

Related Documents

- Basic Setup Guide
- Driver Management
- License Management
Description

Features

The modular software package system of MikroTik RouterOS has the following features:

- Ability to extend RouterOS functions by installing additional software packages
- Optimal usage of the storage space by employing modular/compressed system
- Unused software packages can be uninstalled
- The RouterOS functions and the system itself can be easily upgraded
- Multiple packages can be installed at once
- The package dependency is checked before installing a software package. The package will not be installed, if the required software package is missing
- The version of the feature package should be the same as that of the system package
- The packages can be uploaded on the router using ftp and installed only when the router is going for shutdown during the reboot process
- If the software package file can be uploaded to the router, then the disk space is sufficient for the installation of the package

Installation (Upgrade)

Description

Installation or upgrade of the MikroTik RouterOS software packages can be done by uploading the newer version of the software package to the router and rebooting it.

The software package files are compressed binary files, which can be downloaded from the MikroTik's web page download section. The full name of the software package consists of a descriptive name, version number and extension .npk, exempli gratia system-2.8rc3.npk, routerboard-2.8rc3.npk.

You should check the available hard disk space prior to downloading the package file by issuing /system resource print command. If there is not enough free disk space for storing the upgrade packages, it can be freed up by uninstalling some software packages, which provide functionality not required for your needs. If you have a sufficient amount of free space for storing the upgrade packages, connect to the router using ftp. Use user name and password of a user with full access privileges.

Step-by-Step

- Connect to the router using ftp client
- Select the BINARY mode file transfer
- Upload the software package files to the router and disconnect
• Check the information about the uploaded software packages using the /file print command
• Reboot the router by issuing the /system reboot command or by pressing Ctrl+Alt+Del keys at the router's console
• After reboot, verify that the packages were installed correctly by issuing /system package print command

Notes

The packages uploaded to the router should retain the original name and also be in lowercase.
The installation/upgrade process is shown on the console screen (monitor) attached to the router.
The Free Demo License do not allow software upgrades using ftp. You should do a complete reinstall from floppies, or purchase the license.
Before upgrading the router, please check the current version of the system package and the additional software packages. The versions of additional packages should match the version number of the system software package. The version of the MikroTik RouterOS system software (and the build number) are shown before the console login prompt. Information about the version numbers and build time of the installed MikroTik RouterOS software packages can be obtained using the /system package print command.

Uninstalling

Description

Usually, you do not need to uninstall software packages. However, if you have installed a wrong package, or you need additional free space to install a new one, you have to uninstall some unused packages.

In order to uninstall software package, you have to set uninstall property for that package to yes and reboot the router.

Property Description

uninstall (yes | no ; default: no) - If set to yes, schedules the package for uninstallation on next reboot.

Notes

If a package is marked for uninstallation, but it is required for another (dependent) package, then the marked package cannot be uninstalled. You should uninstall the dependent package too. For the list of package dependencies see the 'Software Package List; section below. The system package will not be uninstalled even if marked for uninstallation.

Example

Suppose we need to uninstall security package from the router:
Downgrading

Command name: /system package downgrade

Description

MikroTik RouterOS™ v2.8 features downgrade option. It allows you to downgrade the software via ftp without losing your license key or reinstalling the router.

You have to choose to what version of RouterOS your present version should be downgraded and upload relevant packages to your router via ftp. Then you need to issue /system package downgrade command.

Command Description

downgrade - this command asks your confirmation and reboots the router. After reboot the software is downgraded (if all needed packages were uploaded to the router)

Example

To downgrade the RouterOS™ (we assume that all packages needed are already uploaded):

[admin@MikroTik] system package> downgrade
Router will be rebooted. Continue? [y/N]: y
system will reboot shortly
[admin@MikroTik] system package>

Software Package List

Description

System Software Package

The system software package provides the basic functionality of the MikroTik RouterOS, namely:

- IP address management, ARP, static IP routing, policy routing, firewall (packet filtering, content filtering, masquerading, and static NAT), traffic shaping (queues), IP traffic accounting, MikroTik Neighbour Discovery, IP Packet Packing, DNS client settings, IP service (servers)
- Ethernet interface support
- IP over IP tunnel interface support
- Ethernet over IP tunnel interface support
- driver management for Ethernet ISA cards
- serial port management
- local user management
- export and import of router configuration scripts
- backup and restore of the router's configuration
- undo and redo of configuration changes
- network diagnostics tools (ping, traceroute, bandwidth tester, traffic monitor)
- bridge support
- system resource management
- package management
- telnet client and server
- local and remote logging facility
- winbox server as well as winbox executable with some plugins

After installing the MikroTik RouterOS, a free license should be obtained from MikroTik to enable the basic system functionality.

Additional Software Feature Packages

The table below shows additional software feature packages, extended functionality provided by them, the required prerequisites and additional licenses, if any.

<table>
<thead>
<tr>
<th>Name</th>
<th>Contents</th>
<th>Prerequisites</th>
<th>Minimal license level</th>
</tr>
</thead>
<tbody>
<tr>
<td>advanced-tools</td>
<td>email client, pingers, netwatch and other utilities</td>
<td>none</td>
<td>1</td>
</tr>
<tr>
<td>arlan</td>
<td>support for DSSS 2.4GHz 2mbps Aironet ISA cards</td>
<td>none</td>
<td>4</td>
</tr>
<tr>
<td>dhcp</td>
<td>DHCP server and client support</td>
<td>none</td>
<td>1</td>
</tr>
<tr>
<td>gps</td>
<td>support for GPS devices</td>
<td>none</td>
<td>1</td>
</tr>
<tr>
<td>hotspot</td>
<td>HotSpot gateway</td>
<td>none</td>
<td>1</td>
</tr>
<tr>
<td>isdn</td>
<td>support for ISDN devices</td>
<td>ppp</td>
<td>1</td>
</tr>
<tr>
<td>lcd</td>
<td>support for</td>
<td>none</td>
<td>1</td>
</tr>
<tr>
<td>Feature</td>
<td>Description</td>
<td>Compatibility</td>
<td>Value</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>---------------</td>
<td>-------</td>
</tr>
<tr>
<td>informational LCD display</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ntp</td>
<td>network time protocol support</td>
<td>none</td>
<td>1</td>
</tr>
<tr>
<td>ppp</td>
<td>support for PPP, PPTP, L2TP, PPPoE and ISDN PPP</td>
<td>none</td>
<td>1</td>
</tr>
<tr>
<td>radiolan</td>
<td>Provides support for 5.8GHz RadioLAN cards</td>
<td>none</td>
<td>4</td>
</tr>
<tr>
<td>routerboard</td>
<td>support for RouterBoard-specific functions and utilities</td>
<td>none</td>
<td>1</td>
</tr>
<tr>
<td>routing</td>
<td>support for RIP, OSPF and BGP4</td>
<td>none</td>
<td>3</td>
</tr>
<tr>
<td>security</td>
<td>support for IPSEC, SSH and secure WinBox connections</td>
<td>none</td>
<td>1</td>
</tr>
<tr>
<td>synchronous</td>
<td>support for Frame Relay and Moxa C101, Moxa C502, Farsync, Cyclades PC300, LMC SBE and XPeed synchronous cards</td>
<td>none</td>
<td>4</td>
</tr>
<tr>
<td>telephony</td>
<td>IP telephony support (H.323)</td>
<td>none</td>
<td>1</td>
</tr>
<tr>
<td>ups</td>
<td>APC Smart Mode UPS support</td>
<td>none</td>
<td>1</td>
</tr>
<tr>
<td>web-proxy</td>
<td>HTTP Web proxy support</td>
<td>none</td>
<td>3</td>
</tr>
<tr>
<td>wireless</td>
<td>Provides support for Cisco Aironet cards, PrismII and Atheros wireless stations and APs</td>
<td>none</td>
<td>4 (Wireless Station) / 5 (Wireless Access Point)</td>
</tr>
</tbody>
</table>
System Upgrade

To upgrade RouterOS to a more recent version, you can simply transfer the packages to router via ftp, using the binary transfer mode, and then just rebooting the router.

This manual discusses a more advanced method how to upgrade a router automatically. If you have more than one router then this can be useful.

Specifications

Packages required: system
License required: level1
Home menu level: /system upgrade
Standards and Technologies: None
Hardware usage: Not significant

System Upgrade

Home menu level: /system upgrade

Related Documents

• Package Management
• License Management
Description

In this submenu you can see available packages and are able to choose which to install from a remote router.

At first you upload new packages to the router via ftp, using the binary data transfer mode. Then (from another router, which you will upgrade) add the router's IP on which are the packages listed in the /system upgrade upgrade-package-source list. Afterwards, you type /system upgrade refresh to update the available package list. To see all available packages, choose /system upgrade print command.

Property Description

refresh - updates currently available package list
download - download packages from list by specifying their numbers
download-all - download all packages that are needed for the upgrade (packages which are available in /system package print' list)
source (read-only: IP address) - source IP address of the router from which the package list entry is retrieved
name (read-only: name) - package name
version (read-only: text) - version of the package
status (read-only: available | scheduled | downloading | downloaded | installed) - package status

Example

See the available packages:

```
[admin@MikroTik] system upgrade> print
  #  SOURCE  NAME         VERSION  STATUS  COMPLETED
  0  192.168.25.8  advanced-tools  2.8.3  available
  1  192.168.25.8    dhcp         2.8.3  available
  2  192.168.25.8   hotspot       2.8.3  available
  3  192.168.25.8    isdn          2.8.3  available
  4  192.168.25.8      ntp         2.8.3  available
  5  192.168.25.8      ppp          2.8.3  available
  6  192.168.25.8 routerboard   2.8.3  available
  7  192.168.25.8     routing      2.8.3  available
  8  192.168.25.8    security     2.8.3  available
  9  192.168.25.8 synchronous   2.8.3  available
 10  192.168.25.8      system      2.8.3  available
 11  192.168.25.8  telephony     2.8.3  available
 12  192.168.25.8        ups       2.8.3  available
 13  192.168.25.8   web-proxy    2.8.3  available
 14  192.168.25.8       wireless  2.8.3  available
[admin@MikroTik] system upgrade> 
```

To upgrade chosen packages:

```
[admin@MikroTik] system upgrade> download 0,1,2,5,6,7,8,9,10,13,14
[admin@MikroTik] system upgrade> print
  #  SOURCE  NAME         VERSION  STATUS  COMPLETED
  0  192.168.25.8  advanced-tools  2.8.3  downloaded
  1  192.168.25.8    dhcp         2.8.3  downloading 16%
  2  192.168.25.8   hotspot       2.8.3  scheduled
  3  192.168.25.8    isdn          2.8.3  available
  4  192.168.25.8      ntp         2.8.3  available
  5  192.168.25.8      ppp          2.8.3  scheduled
```
Adding Package Source

Home menu level: /system upgrade upgrade-package-source

Description

Here can you specify IP address, username and password of the remote hosts from which you will be able to get packages.

Property Description

address (IP address) - source IP address of the router from which the package list entry will be retrieved

user (text) - username of the remote router

password (text) - password of the remote router

Notes

After specifying a remote router in /system upgrade upgrade-package-source', you can type /system upgrade refresh' to refresh the package list and /system upgrade print' to see all available packages.

Example

To add a router, with username admin and no password, from which the packages will be retrieved:

[admin@MikroTik] system upgrade upgrade-package-source> print
ADDRESS USER
0 192.168.25.8 admin
[admin@MikroTik] system upgrade upgrade-package-source>
SSH (Secure Shell) Server and Client

Document revision 2.0 (Fri Mar 05 09:09:40 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
 Summary
 Specifications
 Related Documents
 Additional Documents
SSH Server
 Description
 Property Description
 Example
SSH Client
 Example

General Information

Summary

SSH Client authenticates server and encrypts traffic between the client and server. You can use SSH just the same way as telnet - you run the client, tell it where you want to connect to, give your username and password, and everything is the same after that. After that you won't be able to tell that you're using SSH. The SSH feature can be used with various SSH Telnet clients to securely connect to and administrate the router.

The MikroTik RouterOS supports:

- SSH 1.3, 1.5, and 2.0 protocol standards
- server functions for secure administration of the router
- telnet session termination with 40 bit RSA SSH encryption is supported
- secure ftp is not supported
- Winbox connection encryption (TSL)

The MikroTik RouterOS has been tested with the following SSH telnet terminals:

- PuTTY
- Secure CRT
- Most SSH compatible telnet clients

Specifications

Packages required: security
License required: level1
Related Documents

- Package Management

Additional Documents

- http://www.chiark.greenend.org.uk/~sgtatham/putty.html
- http://pgpdist.mit.edu/FiSSH/index.html
- http://cs.mscd.edu/MSSH/index.html
- http://www.networksimplicity.com/openssh/
- http://www.openssh.com/
- http://www.freessh.org/

SSH Server

Home menu level: /ip service

Description

SSH Server is already up and running after MikroTik router installation. The default port of the service is 22. You can set a different port number.

Property Description

name (name) - service name
port (integer : 1 ..65535) - port the service listens to
address (IP address/mask ; default: 0.0.0.0/0) - IP address from which the service is accessible

Example

```
[admin@MikroTik] ip service> set ssh port=65
[admin@MikroTik] ip service> print
Flags: X - disabled, I - invalid
  #  NAME  PORT  ADDRESS  CERTIFICATE
  0  telnet  23  0.0.0.0/0
  1     ftp  21  0.0.0.0/0
  2    www  80  0.0.0.0/0
  3  hotspot 8088  0.0.0.0/0
  4     ssh  65  0.0.0.0/0
  5 X hotspot-ssl  443  0.0.0.0/0  none
[admin@MikroTik] ip service>
```
SSH Client

Command name: /system ssh

Example

[admin@MikroTik] ip service> /system ssh
address:
[admin@MikroTik] ip service> /
[admin@MikroTik] > system ssh 10.1.0.1 user=admin port=22

Terminal ansi detected, using single line input mode
[admin@10.1.0.1] >
Telnet Server and Client

Document revision 2.1 (Mon Jul 19 07:31:04 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
- Summary
- Specifications
- Related Documents

Telnet Server
- Description
- Example

Telnet Client
- Description
- Example

General Information

Summary

MikroTik RouterOS has a build-in Telnet server and client features. These two are used to communicate with other systems over a network.

Specifications

Packages required: system
License required: level1
Home menu level: /system , /ip service
Standards and Technologies: Telnet (RFC 854)
Hardware usage: Not significant

Related Documents

- Package Management
- System Resource Management

Telnet Server

Home menu level: /ip service

Description

Telnet protocol is intended to provide a fairly general, bi-directional, eight-bit byte oriented communications facility. The main goal is to allow a standard method of interfacing terminal devices to each other.
MikroTik RouterOS implements industry standard Telnet server. It uses port 23, which must not be disabled on the router in order to use the feature.

You can enable/disable this service or allow the use of the service to certain IP addresses.

Example

```
[admin@MikroTik] ip service> print detail
Flags: X - disabled, I - invalid
  0 name="telnet" port=23 address=0.0.0.0
  1 name="ftp" port=21 address=0.0.0.0
  2 name="www" port=80 address=0.0.0.0
  3 name="hotspot" port=8088 address=0.0.0.0
  4 name="ssh" port=65 address=0.0.0.0
  5 X name="hotspot-ssl" port=443 address=0.0.0.0 certificate=none
[admin@MikroTik] ip service>
```

Telnet Client

Command name: `/system telnet [IP address] [port]`

Description

MikroTik RouterOS telnet client is used to connect to other hosts in the network via Telnet protocol.

Example

An example of Telnet connection:

```
[admin@MikroTik] > system telnet 10.1.0.1
Trying 10.1.0.1...
Connected to 10.1.0.1.
Escape character is '^]'.

MikroTik v2.8beta12
Login: admin
Password:

MMMM MMMM KKK TTTTTTTTTTT KKK
MMMM MMMM KKK TTTTTTTTTTT KKK
MMMM MMMM MMMM III KKK KKK RRRRRR OOOOOO TTT III KKK KKK
MMMM MMMM MMMM III KKKKK RRR RRR OOO OOO TTT III KKKKK
MMMM MMMM III KKK KKK RRRRRR OOO OOO TTT III KKK KKK
MMMM MMMM III KKK KKK RRR RRR OOOOOO TTT III KKK KKK

Terminal unknown detected, using single line input mode
[admin@10.1.0.1] >
```

Copyright 1999-2005, MikroTik. All rights reserved. Mikrotik, RouterOS and RouterBOARD are trademarks of Mikrotikls SIA. Other trademarks and registered trademarks mentioned herein are properties of their respective owners.
Terminal Console

Document revision NaN (Tue Apr 20 16:17:53 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
 Summary
 Specifications
 Related Documents
Common Console Functions
 Description
 Example
Lists and Item Names
 Description
 Notes
 Example
Quick Typing
 Description
 Notes
Additional Information
 Description
General Commands
 Description
 Command Description
Safe Mode
 Description

General Information

Summary

The Terminal Console is used for accessing the MikroTik Router's configuration and management features using text terminals, id est remote terminal clients or locally attached monitor and keyboard. The Terminal Console is also used for writing scripts. This manual describes the general console operation principles. Please consult the Scripting Manual on some advanced console commands and on how to write scripts.

Specifications

Packages required: system
License required: level1
Hardware usage: Not significant

Related Documents

 * Scripting Host and Complementary Tools
Common Console Functions

Description

The console allows configuration of the router's settings using text commands. Although the command structure is similar to the Unix shell, you can get additional information about the command structure in the Scripting Host and Complementary Tools manual. Since there is a lot of available commands, they are split into groups organized in a way of hierarchical menu levels. The name of a menu level reflects the configuration information accessible in the relevant section, exempli gratia /ip hotspot.

In general, all menu levels hold the same commands. The difference is expressed mainly in command parameters.

Example

For example, you can issue the /ip route print command:

```
[admin@MikroTik] > /ip route print
Flags: X - disabled, I - invalid, D - dynamic, J - rejected,
C - connect, S - static, r - rip, o - ospf, b - bgp
  #  DST-ADDRESS  G GATEWAY DISTANCE INTERFACE
0  S  0.0.0.0/0  r 192.168.2.1  1  WAN
1  DC  192.168.124.0/24  r 0.0.0.0  0  LAN
2  DC  192.168.2.0/24  r 0.0.0.0  0  WAN
3  DC  192.168.0.0/24  r 0.0.0.0  0  LAN

[admin@MikroTik] >
```

Instead of typing ip route path before each command, the path can be typed only once to move into this particular branch of menu hierarchy. Thus, the example above could also be executed like this:

```
[admin@MikroTik] > ip route
[admin@MikroTik] ip route> print
Flags: X - disabled, I - invalid, D - dynamic, J - rejected,
C - connect, S - static, r - rip, o - ospf, b - bgp
  #  DST-ADDRESS  G GATEWAY DISTANCE INTERFACE
0  S  0.0.0.0/0  r 192.168.2.1  1  WAN
1  DC  192.168.124.0/24  r 0.0.0.0  0  LAN
2  DC  192.168.2.0/24  r 0.0.0.0  0  WAN
3  DC  192.168.0.0/24  r 0.0.0.0  0  LAN

[admin@MikroTik] ip route>
```

Notice that the prompt changes in order to reflect where you are located in the menu hierarchy at the moment. To move to the top level again, type /:

```
[admin@MikroTik] > /ip route
[admin@MikroTik] ip route> /

[admin@MikroTik] >
```

To move up one command level, type ..:

```
[admin@MikroTik] ip route> ..
[admin@MikroTik] ip>
```

You can also use / and .. to execute commands from other menu levels without changing the current level:
Lists and Item Names

Description

Lists

Many of the command levels operate with arrays of items: interfaces, routes, users etc. Such arrays are displayed in similarly looking lists. All items in the list have an item number followed by its parameter values.

To change parameters of an item, you have to specify it's number to the set command.

Item Names

Some lists have items that have specific names assigned to each. Examples are interface or user levels. There you can use item names instead of item numbers.

You do not have to use the print command before accessing items by name. As opposed to numbers, names are not assigned by the console internally, but are one of the items' properties. Thus, they would not change on their own. However, there are all kinds of obscure situations possible when several users are changing router's configuration at the same time. Generally, item names are more "stable" than the numbers, and also more informative, so you should prefer them to numbers when writing console scripts.

Notes

Item numbers are assigned by print command and are not constant - it is possible that two successive print commands will order items differently. But the results of last print commands are memorized and thus, once assigned, item numbers can be used even after add, remove and move operations (after move operation item numbers are moved with the items). Item numbers are assigned on per session basis, they will remain the same until you quit the console or until the next print command is executed. Also, numbers are assigned separately for every item list, so ip address print would not change numbers for interface list.

Example

[admin@MikroTik] interface> set 0 mtu=1200
ERROR: item number must be assigned by a print command
use print command before using an item number in a command
[admin@MikroTik] interface> print
Flags: X - disabled, D - dynamic, R - running

<table>
<thead>
<tr>
<th>#</th>
<th>NAME</th>
<th>TYPE</th>
<th>RX-RATE</th>
<th>TX-RATE</th>
<th>MTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>R Public</td>
<td>ether</td>
<td>0</td>
<td>0</td>
<td>1500</td>
</tr>
<tr>
<td>1</td>
<td>R Local</td>
<td>ether</td>
<td>0</td>
<td>0</td>
<td>1500</td>
</tr>
<tr>
<td>2</td>
<td>R wlan1</td>
<td>wlan</td>
<td>0</td>
<td>0</td>
<td>1500</td>
</tr>
</tbody>
</table>

[admin@MikroTik] interface> set 0
disabled mtu name rx-rate tx-rate
[admin@MikroTik] interface> set 0 mtu=1200
[admin@MikroTik] interface> set wlan1 mtu=1300
[admin@MikroTik] interface> print
Flags: X - disabled, D - dynamic, R - running

<table>
<thead>
<tr>
<th>#</th>
<th>NAME</th>
<th>TYPE</th>
<th>RX-RATE</th>
<th>TX-RATE</th>
<th>MTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>R Public</td>
<td>ether</td>
<td>0</td>
<td>0</td>
<td>1200</td>
</tr>
<tr>
<td>1</td>
<td>R Local</td>
<td>ether</td>
<td>0</td>
<td>0</td>
<td>1500</td>
</tr>
<tr>
<td>2</td>
<td>R wlan1</td>
<td>wlan</td>
<td>0</td>
<td>0</td>
<td>1300</td>
</tr>
</tbody>
</table>

Quick Typing

Description

There are two features in the console that help entering commands much quicker and easier - the [Tab] key completions, and abbreviations of command names. Completions work similarly to the bash shell in UNIX. If you press the [Tab] key after a part of a word, console tries to find the command within the current context that begins with this word. If there is only one match, it is automatically appended, followed by a space:

/inter[Tab]_ becomes /interface _

If there is more than one match, but they all have a common beginning, which is longer than that what you have typed, then the word is completed to this common part, and no space is appended:

/interface set e[Tab]_ becomes /interface set ether_

If you've typed just the common part, pressing the tab key once has no effect. However, pressing it for the second time shows all possible completions in compact form:

```
[admin@MikroTik] > interface set e[Tab]_
[admin@MikroTik] > interface set ether[Tab]_
[admin@MikroTik] > interface set ether[Tab]_
 ether1 ether5
[admin@MikroTik] > interface set ether_
```

The [Tab] key can be used almost in any context where the console might have a clue about possible values - command names, argument names, arguments that have only several possible values (like names of items in some lists or name of protocol in firewall and NAT rules). You cannot complete numbers, IP addresses and similar values.

Another way to press fewer keys while typing is to abbreviate command and argument names. You can type only beginning of command name, and, if it is not ambiguous, console will accept it as a full name. So typing:

```
[admin@MikroTik] > pl 10.1 c 3 s 100
```

equals to:

```
[admin@MikroTik] > ping 10.0.0.1 count 3 size 100
```
Notes

Pressing [Tab] key while entering IP address will do a DNS lookup, instead of completion. If what is typed before cursor is a valid IP address, it will be resolved to a DNS name (reverse resolve), otherwise it will be resolved directly (i.e. to an IP address). To use this feature, DNS server must be configured and working. To avoid input lockups any such lookup will timeout after half a second, so you might have to press [Tab] several times, before the name is actually resolved.

It is possible to complete not only beginning, but also any distinctive substring of a name: if there is no exact match, console starts looking for words that have string being completed as first letters of a multiple word name, or that simply contain letters of this string in the same order. If single such word is found, it is completed at cursor position. For example:

```
[admin@MikroTik] > interface x[ TAB]_
[admin@MikroTik] > interface export _
[admin@MikroTik] > interface mt[ TAB]_
[admin@MikroTik] > interface monitor-traffic _
```

Additional Information

Description

Built-in Help

The console has a built-in help, which can be accessed by typing ?. General rule is that help shows what you can type in position where the ? was pressed (similarly to pressing [Tab] key twice, but in verbose form and with explanations).

Internal Item Numbers

You can specify multiple items as targets to some commands. Almost everywhere, where you can write the number of item, you can also write a list of numbers:

```
[admin@MikroTik] > interface print
Flags: X - disabled, D - dynamic, R - running
  #   NAME  TYPE  MTU
  0   R ether1  ether  1500
  1   R ether2  ether  1500
  2   R ether3  ether  1500
  3   R ether4  ether  1500
[admin@MikroTik] > interface set 0,1,2 mtu=1460
[admin@MikroTik] > interface print
Flags: X - disabled, D - dynamic, R - running
  #   NAME  TYPE  MTU
  0   R ether1  ether  1460
  1   R ether2  ether  1460
  2   R ether3  ether  1460
  3   R ether4  ether  1500
[admin@MikroTik] >
```

General Commands
Description

There are some commands that are common to nearly all menu levels, namely: print, set, remove, add, find, get, export, enable, disable, comment, move. These commands have similar behavior throughout different menu levels.

Command Description

print - shows all information that's accessible from particular command level. Thus, /system clock print shows system date and time, /ip route print shows all routes etc. If there's a list of items in current level and they are not read-only, i.e. you can change/remove them (example of read-only item list is /system history, which shows history of executed actions), then print command also assigns numbers that are used by all commands that operate with items in this list. - applicable only to lists of items. The action is performed with all items in this list in the same order in which they are given. - forces the print command to use tabular output form - specifies what parameters to include in printout - forces the print command to use property=value output form - shows the number of items - prints the contents of the specific submenu into a file. This file will be available in the router's ftp - shows the output from the print command for every interval seconds - prints the oid value, which is useful for SNMP - prints the output without paging, to see printed output which does not fit in the screen, use [Shift]+[PgUp] key combination

set - allows you to change values of general parameters or item parameters. The set command has arguments with names corresponding to values you can change. Use ? or double [Tab] to see list of all arguments. If there is a list of items in this command level, then set has one action argument that accepts the number of item (or list of numbers) you wish to set up. This command does not return anything.

add - this command usually has all the same arguments as set, except the action number argument. It adds a new item with values you have specified, usually to the end of list (in places where order is relevant). There are some values that you have to supply (like the interface for a new route), other values are set to defaults unless you explicitly specify them. - Copies an existing item. It takes default values of new item's properties from another item. If you do not want to make exact copy, you can specify new values for some properties. When copying items that have names, you will usually have to give a new name to a copy - add command returns internal number of item it has added - places a new item before an existing item with specified position. Thus, you do not need to use the move command after adding an item to the list - controls disabled/enabled state of the newly added item(-s) - holds the description of a newly created item

remove - removes item(-s) from a list - contains number(-s) or name(-s) of item(-s) to remove.

move - changes the order of items in list where one is relevant. Item numbers after move command are left in a consistent, but hardly intuitive order, so it's better to resync them by using print after each move command. - first argument. Specifies the item(-s) being moved. - second argument. Specifies the item before which to place all items being moved (they are placed at the end of the list if the second argument is omitted).

find - The find command has the same arguments as set, and an additional from argument which works like the from argument with the print command. Plus, find command has flag arguments like disabled, invalid that take values yes or no depending on the value of respective flag. To see all flags and their names, look at the top of print command's output. The find command returns internal numbers of all items that have the same values of arguments as specified.
edit - this command is in every place that has set command, it can be used to edit values of properties, exempli gratia:

```
[admin@ID] ip route> print
Flags: X - disabled, I - invalid, D - dynamic, J - rejected,
       C - connect, S - static, r - rip, o - ospf, b - bgp
#   DST-ADDRESS   G   GATEWAY   DISTANCE INTERFACE
 0   S  0.0.0.0/0   r  1.1.1.1   1 ether1
 1   DC 10.10.11.0/24  r  0.0.0.0   0 ether1
 2   DC 10.1.0.0/24  r  0.0.0.0   0 ether2
 3   DC 1.1.1.0/24  r  0.0.0.0   0 ether1
[admin@ID] ip route> edit 0 gateway
```

Safe Mode

Description

It is possible to change router configuration in a way that will make it not accessible except from local console. Usually this is done by accident, but there is no way to undo last change when connection to router is already cut. Safe mode can be used to minimize such risk.

Safe mode is entered by pressing `[Ctrl]+[X]`. To quit safe mode, press `[Ctrl]+[X]` again.

```
[admin@MikroTik] ip firewall rule input> [Ctrl]+[X]
[Safe Mode taken]
[admin@MikroTik] ip firewall rule input<SAFE>
```

Message **Safe Mode taken** is displayed and prompt changes to reflect that session is now in safe mode. All configuration changes that are made (also from other login sessions), while router is in safe mode, are automatically undone if safe mode session terminates abnormally. You can see all such changes that will be automatically undone tagged with an **F** flag in system history:

```
[admin@MikroTik] ip firewall rule input<SAFE> add
[admin@MikroTik] ip firewall rule input<SAFE> /system history print
Flags: U - undoable, R - redoable, F - floating-undo
ACTION BY POLICY
F rule added admin write
[admin@MikroTik] ip firewall rule input<SAFE>
```

Now, if telnet connection is cut, then after a while (TCP timeout is 9 minutes) all changes that were made while in safe mode will be undone. Exiting session by `[Ctrl]+[D]` also undoes all safe mode changes, while `/quit` does not.

If another user tries to enter safe mode, he's given following message:

```
[admin@MikroTik] >
Hijacking Safe Mode from someone - unroll/release/don't take it [u/r/d]:

• [u] - undoes all safe mode changes, and puts the current session in safe mode.
• [d] - leaves everything as-is.
• [r] - keeps all current safe mode changes, and puts current session in a safe mode. Previous owner of safe mode is notified about this:

[admin@MikroTik] ip firewall rule input
[Safe mode released by another user]
```

If too many changes are made while in safe mode, and there's no room in history to hold them all (currently history keeps up to 100 most recent actions), then session is automatically put out of the
safe mode, no changes are automatically undone. Thus, it is best to change configuration in small steps, while in safe mode. Pressing [Ctrl]+[X] twice is an easy way to empty safe mode action list.
Winbox

Document revision 1.0 (Fri Mar 05 07:59:49 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
General Information
 Summary
 Description
Troubleshooting
 Description

General Information

Summary

The MikroTik RouterOS can be accessed remotely, using http and WinBox Console, for example, using the web browser of your workstation.

Description

The Winbox console is used for accessing the MikroTik Router configuration and management features using graphical user interface.

All Winbox interface functions are as close as possible to Console functions: all Winbox functions are exactly in the same hierarchy in Terminal Console and vice versa (except functions that are not implemented in Winbox). That is why there are no Winbox sections in the manual.

The Winbox Console plugin loader, the winbox.exe program, can be retrieved from the MikroTik router, the URL is http://router_address/winbox/winbox.exe Use any web browser on Windows 95/98/ME/NT4.0/2000/XP to retrieve the router's web page with the mentioned link. If your router is not specifically configured, you can also type in the web-browser just http://router_address

Note that if you change the default port www service on the router, you will have to specify it just after the IP address separated by column (e.g. 10.0.0.1:8080)

The Winbox plugins are cached on the local disk for each MikroTik RouterOS??? version. The plugins are not downloaded, if they are in the cache, and the router has not been upgraded since the last time it has been accessed.

Starting the Winbox Console

When connecting to the MikroTik router via http (TCP port 80 by default), the router's Welcome Page is displayed in the web browser, for example:

By clicking on the Winbox Console link you can start the winbox.exe download. Choose Open to start the Winbox loader program (you can also save this program to your local disk, and run it from there):
The winbox.exe program opens the Winbox login window. Login to the router by specifying the IP address (and the port number if you have changed it from the default value of 80), user name, and password, for example:

You can also save some sessions to the list (to run them, just double-click on an item).

The Winbox Console of the router:

The Winbox Console uses TCP port 3986 (not secure) or 3987 (secure; requires security package to be installed). After logging onto the router you can work with the MikroTik router's configuration through the Winbox console and perform the same tasks as using the regular console.

Overview of Common Functions

You can use the menu bar to navigate through the router's configuration menus, open configuration windows. By double clicking on some list items in the windows you can open configuration windows for the specific items, and so on.

There are some hints for using the Winbox Console:

• To open the required window, simply click on the corresponding menu item
• Add a new entry
• Remove an existing entry
• Enable an item
• Disable an item
• Make or edit a comment
• Refresh a window
• Undo an action
• Redo an action
• Logout from the Winbox Console

Troubleshooting

Description

• I cannot open the Winbox Console
• Check the port and address for www service in /ip service print list. Make sure the address you are connecting from matches the network you've specified in address field and that you've specified the correct port in the Winbox loader. The command /ip service set www port=80 address=0.0.0.0/0 will change these values to the default ones so you will be able to connect specifying just the correct address of the router in the address field of Winbox loader
• The Winbox Console uses TCP port 3986 (not secure) or 3987 (secure; requires security package to be installed). Make sure you have access to it through the firewall.
IP Addresses and ARP

Document revision 0.9 (Fri Mar 05 08:35:08 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
 Summary
 Specifications
 Related Documents
IP Addressing
 Description
 Property Description
 Notes
 Example
Address Resolution Protocol
 Description
 Property Description
 Notes
 Example
Proxy-ARP feature
 Description
 Example
Unnumbered Interfaces
 Description
 Example

General Information

Summary

The following Manual discusses IP address management and the Address Resolution Protocol settings. IP addresses serve as identification when communicating with other network devices using the TCP/IP protocol. In turn, communication between devices in one physical network proceeds with the help of Address Resolution Protocol and ARP addresses.

Specifications

Packages required: system
License required: level1
Home menu level: /ip address , /ip arp
Standards and Technologies: IP, ARP
Hardware usage: Not significant

Related Documents

• Package Management
IP Addressing

Home menu level: /ip address

Description

IP addresses serve for a general host identification purposes in IP networks. Typical (IPv4) address consists of four octets. For proper addressing the router also needs the network mask value, *id est* which bits of the complete IP address refer to the address of the host, and which - to the address of the network. The network address value is calculated by binary **AND** operation from network mask and IP address values. It's also possible to specify IP address followed by slash "/" and amount of bits assigned to a network mask.

In most cases, it is enough to specify the address, the netmask, and the interface arguments. The network prefix and the broadcast address are calculated automatically.

It is possible to add multiple IP addresses to an interface or to leave the interface without any addresses assigned to it. Leaving a physical interface without an IP address is not a must when the bridging between interfaces is used (starting from RouterOS version 2.8). In case of bridging, the IP address can be assigned to any interface in the bridge, but actually the address will belong to the bridge interface. You can use `/ip address print detail` to see to which interface the address belongs to.

MikroTik RouterOS has following types of addresses:

- **Static** - manually assigned to the interface by a user
- **Dynamic** - automatically assigned to the interface by established ppp, ppptp, or pppoe connections

Property Description

- **address (IP address)** - IP address of the host
- **broadcast (IP address ; default: 255.255.255.255)** - broadcasting IP address, calculated by default from an IP address and a network mask
- **disabled (yes | no ; default: no)** - specifies whether the address is disabled or not
- **interface (name)** - interface name the IP address is assigned to
- **actual-interface (read-only: name)** - only applicable to logical interfaces like bridges or tunnels. Holds the name of the actual hardware interface the logical one is bound to.
- **netmask (IP address ; default: 0.0.0.0)** - specifies network address part of an IP address
- **network (IP address ; default: 0.0.0.0)** - IP address for the network. For point-to-point links it should be the address of the remote end

Notes

You cannot have two different IP addresses from the same network assigned to the router. *Exempi gratia*, the combination of IP address `10.0.0.1/24` on the *ether1* interface and IP address `10.0.0.132/24` on the *ether2* interface is invalid, because both addresses belong to the same network `10.0.0.0/24`. Use addresses from different networks on different interfaces, or enable `proxy-arp` on
ether1 or ether2.

Example

[admin@MikroTik] ip address> add address=10.10.10.1/24 interface=ether2
[admin@MikroTik] ip address> print
Flags: X - disabled, I - invalid, D - dynamic
 # ADDRESS NETWORK BROADCAST INTERFACE
 0 2.2.2.1/24 2.2.2.0 2.2.2.255 ether2
 1 10.5.7.244/24 10.5.7.0 10.5.7.255 ether1
 2 10.10.10.1/24 10.10.10.0 10.10.10.255 ether2
[admin@MikroTik] ip address>

Address Resolution Protocol

Home menu level: /ip arp

Description

Even though IP packets are addressed using IP addresses, hardware addresses must be used to actually transport data from one host to another. Address Resolution Protocol is used to map OSI level 3 IP addresses to OSI level 2 MAC addresses. A router has a table of currently used ARP entries. Normally the table is built dynamically, but to increase network security, it can be built statically by means of adding static entries.

Property Description

address (IP address) - IP address to be mapped
interface (name) - interface name the IP address is assigned to
mac-address (MAC address; default: 00:00:00:00:00:00) - MAC address to be mapped to

Notes

Maximal number of ARP entries is 1024.

If arp feature is turned off on the interface, i.e., arp=disabled is used, ARP requests from clients are not answered by the router. Therefore, static arp entry should be added to the clients as well. For example, the router's IP and MAC addresses should be added to the Windows workstations using the arp command:

C:\> arp -s 10.5.8.254 00-aa-00-62-c6-09

If arp property is set to reply-only on the interface, then router only replies to ARP requests. Neighbour MAC addresses will be resolved using /ip arp statically set table only

Example

[admin@MikroTik] ip arp> add address=10.10.10.10 interface=ether2 mac-address=06:21:00:56:00:12
[admin@MikroTik] ip arp> print
Flags: X - disabled, I - invalid, H - DHCP, D - dynamic
 # ADDRESS MAC-ADDRESS INTERFACE
 0 D 2.2.2.2 00:30:4f:1b:b3:d9 ether2
If static ARP entries are used for network security on an interface, you should set `arp` to 'reply-only' on that interface. Do it under the relevant `/interface` menu:

```
[admin@MikroTik] ip arp> /interface ethernet set ether2 arp=reply-only
[admin@MikroTik] ip arp> print
Flags: X - disabled, I - invalid, H - DHCP, D - dynamic
# ADDRESS MAC-ADDRESS INTERFACE
0 D 10.5.7.242 00:A0:24:9D:52:A4 ether1
1 10.10.10.10 06:21:00:56:00:12 ether2
```

Proxy-ARP feature

Description

All physical interfaces, like Ethernet, Atheros and Prism (wireless), Aironet (PC), WaveLAN, etc., can be set to use the Address Resolution Protocol or not. The other possible setting is to use Proxy-ARP feature. The Proxy-ARP means that the router will be listening to ARP requests on the relevant interface and respond to them with it's own MAC address, if the requests matches any other IP address of the router.

This can be useful, for example, if you want to assign dial-in (ppp, pppoe, pptp) clients IP addresses from the same address space as used on the connected LAN.

Example

Consider the following configuration:

The MikroTik Router setup is as follows:

```
admin@MikroTik] ip arp> /interface ethernet print
Flags: X - disabled, R - running
  # NAME MTU MAC-ADDRESS ARP
  0 R eth-LAN 1500 00:50:08:00:00:F5 proxy-arp
[admin@MikroTik] ip arp> /interface print
Flags: X - disabled, D - dynamic, R - running
  # NAME TYPE MTU
  0 eth-LAN ether 1500
  1 prism1 prism 1500
  2 D pppoe-in25 pppoe-in
  3 D pppoe-in26 pppoe-in
[admin@MikroTik] ip arp> /ip address print
Flags: X - disabled, I - invalid, D - dynamic
  # ADDRESS NETWORK BROADCAST INTERFACE
  0 10.0.0.217/24 10.0.0.0 10.0.0.255 eth-LAN
  1 D 10.0.0.217/32 10.0.0.230 0.0.0.0 pppoe-in25
  2 D 10.0.0.217/32 10.0.0.231 0.0.0.0 pppoe-in26
[admin@MikroTik] ip arp> /ip route print
Flags: X - disabled, I - invalid, D - dynamic, J - rejected, C - connect, S - static, R - rip, O - ospf, B - bgp
  # DST-ADDRESS G GATEWAY DISTANCE INTERFACE
  0 S 0.0.0.0/0 r 10.0.0.1 1 eth-LAN
  1 D 10.0.0.0/24 r 0.0.0.0 0 0.0.0.0 pppoe-in25
  2 D 10.0.0.230/32 r 0.0.0.0 0 pppoe-in25
  3 D 10.0.0.231/32 r 0.0.0.0 0 pppoe-in26
[admin@MikroTik] ip arp>
```
Unnumbered Interfaces

Description

Unnumbered interfaces can be used on serial point-to-point links, e.g., MOXA or Cyclades interfaces. A private address should be put on the interface with the network being the same as the address on the router on the other side of the p2p link (there may be no IP on that interface, but there is an ip for that router).

Example

```
[admin@MikroTik] ip address> add address=10.0.0.214/32 network=192.168.0.1 \
  interface=pppsync
[admin@MikroTik] ip address> print
  Flags: X - disabled, I - invalid, D - dynamic
  # ADDRESS      NETWORK    BROADCAST   INTERFACE
   0 10.0.0.214/32  192.168.0.1  192.168.0.1     pppsync
[admin@MikroTik] ip address> .. route print detail
  Flags: X - disabled, I - invalid, D - dynamic, J - rejected,
  C - connect, S - static, R - rip, O - ospf, B - bgp
  0  S dst-address=0.0.0.0/0 preferred-source=0.0.0.0 gateway=192.168.0.1
gateway-statereachable distance=1 interface=pppsync

  1  DC dst-address=192.168.0.1/32 preferred-source=10.0.0.214
gateway=0.0.0.0 gateway-statereachable distance=0 interface=pppsync

[admin@MikroTik] ip address>
```

As you can see, a dynamic connected route has been automatically added to the routes list. If you want the default gateway be the other router of the p2p link, just add a static route for it. It is shown as 0 in the example above.
OSPF

Document revision 1.3 (Mon Sep 06 04:56:42 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
Summary
Specifications
Related Documents
Description
General Setup
Description
Property Description
Notes
Example
Areas
Description
Property Description
Example
Networks
Description
Property Description
Notes
Example
Interfaces
Description
Property Description
Example
Virtual Links
Description
Property Description
Notes
Example
Neighbours
Description
Property Description
Notes
Example
OSPF backup without using a tunnel
Routing tables with Revised Link Cost
Functioning of the Backup

General Information

Summary
MikroTik RouterOS implements OSPF Version 2 (RFC 2328). The OSPF protocol is the link-state protocol that takes care of the routes in the dynamic network structure that can employ different paths to its subnetworks. It always chooses shortest path to the subnetwork first.

Specifications

Packages required: **routing**
License required: **level3**
Home menu level: `/routing ospf`
Standards and Technologies: **OSPF**
Hardware usage: **Not significant**

Related Documents

- Package Management
- IP Addresses and ARP
- Routes, Equal Cost Multipath Routing, Policy Routing
- Log Management

Description

Open Shortest Path First protocol is a link-state routing protocol. It uses a link-state algorithm to build and calculate the shortest path to all known destinations. The shortest path is calculated using the Dijkstra algorithm. OSPF distributes routing information between the routers belonging to a single autonomous system (AS). An AS is a group of routers exchanging routing information via a common routing protocol.

In order to deploy the OSPF all routers it will be running on should be configured in a coordinated manner (note that it also means that the routers should have the same MTU for all the networks advertised by OSPF protocol).

The OSPF protocol is started after you will add a record to the OSPF network list. The routes learned by the OSPF protocol are installed in the routes table list with the distance of 110.

General Setup

Home menu level: `/routing ospf`

Description

In this section you will learn how to configure basic OSPF settings.

Property Description

`distribute-default (never | if-installed-as-type-1 | if-installed-as-type-2 | always-as-type-1 | always-as-type-2 ; default: never)` - specifies how to distribute default route. Should be used for ABR (Area Border router) or ASBR (Autonomous System boundary router) settings

- **never** - do not send own default route to other routers
• **if-installed-as-type-1** - send the default route with type 1 metric only if it has been installed (a static default route, or route added by DHCP, PPP, etc.)

• **if-installed-as-type-2** - send the default route with type 2 metric only if it has been installed (a static default route, or route added by DHCP, PPP, etc.)

• **always-as-type-1** - always send the default route with type 1 metric

• **always-as-type-2** - always send the default route with type 2 metric

metric-bgp (integer; default: 20) - specifies the cost of the routes learned from BGP protocol

metric-connected (integer; default: 20) - specifies the cost of the routes to directly connected networks

metric-default (integer; default: 1) - specifies the cost of the default route

metric-rip (integer; default: 20) - specifies the cost of the routes learned from RIP protocol

metric-static (integer; default: 20) - specifies the cost of the static routes

redistribute-bgp (as-type-1 | as-type-2 | no; default: no) - with this setting enabled the router will redistribute the information about all routes learned by the BGP protocol

redistribute-connected (as-type-1 | as-type-2 | no; default: no) - if set, the router will redistribute the information about all connected routes, i.e., routes to directly reachable networks

redistribute-rip (as-type-1 | as-type-2 | no; default: no) - with this setting enabled the router will redistribute the information about all routes learned by the RIP protocol

redistribute-static (as-type-1 | as-type-2 | no; default: no) - if set, the router will redistribute the information about all static routes added to its routing database, i.e., routes that have been created using the /ip route add command

router-id (IP address; default: 0.0.0.0) - OSPF Router ID. If not specified, OSPF uses the largest IP address configured on the interfaces as its router ID

Notes

Within one area, only the router that is connected to another area (i.e. Area border router) or to another AS (i.e. Autonomous System boundary router) should have the propagation of the default route enabled.

OSPF protocol will try to use the shortest path (path with the smallest total cost) if available.

OSPF protocol supports two types of metrics:

• **type1** - external metrics are expressed in the same units as OSPF interface cost. In other words the router expects the cost of a link to a network which is external to AS to be the same order of magnitude as the cost of the internal links.

• **type2** - external metrics are an order of magnitude larger; any type2 metric is considered greater than the cost of any path internal to the AS. Use of type2 external metric assumes that routing between AS is the major cost of routing a packet, and eliminates the need conversion of external costs to internal link state metrics.

Both Type 1 and Type 2 external metrics can be used in the AS at the same time. In that event, Type 1 external metrics always take precedence.

In /ip route you can see routes with Io status. Because router receives routers from itself.

The metric cost can be calculated from line speed by using the formula 10e+8/line speed. The table

Copyright 1999-2005, MikroTik. All rights reserved. Mikrotik, RouterOS and RouterBOARD are trademarks of Mikrotikls SIA. Other trademarks and registered trademarks mentioned herein are properties of their respective owners.
contains some examples:

<table>
<thead>
<tr>
<th>network type</th>
<th>cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethernet</td>
<td>10</td>
</tr>
<tr>
<td>T1</td>
<td>64</td>
</tr>
<tr>
<td>64kb/s</td>
<td>1562</td>
</tr>
</tbody>
</table>

Example

To enable the OSPF protocol redistribute routes to the connected networks as **type1** metrics with the cost of 1, you need do the following:

```
[admin@MikroTik] routing ospf> set redistribute-connected=as-type-1 \n \... metric-connected=1
[admin@MikroTik] routing ospf> print
  router-id: 0.0.0.0
  distribute-default: never
  redistribute-connected: as-type-1
  redistribute-static: no
  redistribute-rip: no
  redistribute-bgp: no
  metric-default: 1
  metric-connected: 1
  metric-static: 20
  metric-rip: 20
  metric-bgp: 20
[admin@MikroTik] routing ospf>
```

Areas

Home menu level: `/routing ospf area`

Description

OSPF allows collections of routers to be grouped together. Such group is called an area. Each area runs a separate copy of the basic link-state routing algorithm. This means that each area has its own link-state database and corresponding graph.

The structure of an area is invisible from the outside of the area. This isolation of knowledge enables the protocol to effect a marked reduction in routing traffic as compared to treating the entire Autonomous System as a single link-state domain.

60-80 routers have to be the maximum in one area.

Property Description

area-id (IP address ; default: 0.0.0.0) - OSPF area identifier. Default area-id=0.0.0.0 is the backbone area. The OSPF backbone always contains all area border routers. The backbone is responsible for distributing routing information between non-backbone areas. The backbone must be contiguous. However, areas do not need to be physical connected to backbone. It can be done with virtual link. The name and area-id for this area can not be changed.

authentication (none | simple | md5 ; default: none) - specifies authentication method for OSPF protocol messages.
- **none** - do not use authentication
- **simple** - plain text authentication
- **md5** - keyed Message Digest 5 authentication

default-cost
(*integer* ; default: 1) - specifies the default cost used for stub areas. Applicable only to area boundary routers

name
(*name* ; default: "") - OSPF area’s name

stub
(*yes | no* ; default: no) - a stub area is an area which is out from part with no routers or areas beyond it. A stub area is configured to avoid AS External Link Advertisements being flooded into the Stub area. One of the reason to configure a Stub area is that the size of the link state database is reduced along with the routing table and less CPU cycles are used to process. Any router which is trying access to a network outside the area sends the packets to the default route

Example

To define additional OSPF area named **local_10** with **area-id=0.0.10.5**, do the following:

```
[admin@WiFi] routing ospf area> add area-id=0.0.10.5 name=local_10
[admin@WiFi] routing ospf area> print
```

<table>
<thead>
<tr>
<th>#</th>
<th>NAME</th>
<th>AREA-ID</th>
<th>STUB</th>
<th>DEFAULT-COST</th>
<th>AUTHENTICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>backbone</td>
<td>0.0.0.0</td>
<td></td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>1</td>
<td>local_10</td>
<td>0.0.10.5</td>
<td>no</td>
<td>1</td>
<td>none</td>
</tr>
</tbody>
</table>

Networks

Home menu level: /routing ospf network

Description

There can be Point-to-Point networks or Multi-Access networks. Multi-Access network can be a broadcast network (a single message can be sent to all routers)

To start the OSPF protocol, you have to define the networks on which it will run and the area ID for each of those networks

Property Description

area
(*name* ; default: **backbone**) - the OSPF area to be associated with the specified address range

network
(*IP address/mask* ; default: **20**) - the network associated with the area. The network argument allows defining one or multiple interfaces to be associated with a specific OSPF area. Only directly connected networks of the router may be specified

Notes

You should set the network address exactly the same as the remote point IP address for point-to-point links. The right netmask in this case is /32.

Example
To enable the OSPF protocol on the 10.10.1.0/24 network, and include it into the backbone area, do the following:

```
[admin@MikroTik] routing ospf network> add area=backbone network=10.10.1.0/24
[admin@MikroTik] routing ospf network> print
Flags: X - disabled
  # NETWORK AREA
  0 10.10.1.0/24 backbone
[admin@MikroTik] routing ospf>
```

Interfaces

Home menu level: `/routing ospf interface`

Description

This facility provides tools for additional in-depth configuration of OSPF interface specific parameters. You do not have to configure interfaces in order to run OSPF

Property Description

- **authentication-key** (text; default: '') - authentication key have to be used by neighboring routers that are using OSPF's simple password authentication
- **cost** (integer; default: 1) - interface cost expressed as link state metric
- **dead-interval** (time; default: 40s) - specifies the interval after which a neighbor is declared as dead. The interval is advertised in the router's hello packets. This value must be the same for all routers and access servers on a specific network
- **hello-interval** (time; default: 10s) - the interval between hello packets that the router sends on the interface. The smaller the hello-interval, the faster topological changes will be detected, but more routing traffic will ensue. This value must be the same on each end of the adjacency otherwise the adjacency will not form
- **interface** (name; default: all) - interface on which OSPF will run
 - **all** - is used for the interfaces not having any specific settings
- **priority** (integer; default: 1) - router's priority. It helps to determine the designated router for the network. When two routers attached to a network both attempt to become the designated router, the one with the higher router's priority takes precedence
- **retransmit-interval** (time; default: 5s) - time between retransmitting lost link state advertisements. When a router sends a link state advertisement (LSA) to its neighbor, it keeps the LSA until it receives back the acknowledgment. If it receives no acknowledgment in time, it will retransmit the LSA. The following settings are recommended: for Broadcast network are 5 seconds and for Point-to-Point network are 10 seconds
- **transmit-delay** (time; default: 1s) - link state transmit delay is the estimated time it takes to transmit a link state update packet on the interface

Example

To add an entry that specifies that `ether2` interface should send Hello packets every 5 seconds, do the following:
Virtual Links

Home menu level: /routing ospf virtual-link

Description

As stated in OSPF RFC, the backbone area must be contiguous. However, it is possible to define areas in such a way that the backbone is no longer contiguous. In this case the system administrator must restore backbone connectivity by configuring virtual links. Virtual link can be configured between two routers through common area called transit area, one of them should have to be connected with backbone. Virtual links belong to the backbone. The protocol treats two routers joined by a virtual link as if they were connected by an unnumbered point-to-point network

Property Description

neighbor-id (IP address; default: 0.0.0.0) - specifies router-id of the neighbour
transit-area (name; default: (unknown)) - a non-backbone area the two routers have in common

Notes

Virtual links can not be established through stub areas

Example

To add a virtual link with the 10.0.0.201 router through the ex area, do the following:

[admin@MikroTik] routing ospf virtual-link> add neighbor-id=10.0.0.201 ... transit-area=ex
[admin@MikroTik] routing ospf virtual-link> print
Flags: X - disabled, I - invalid
NEIGHBOR-ID TRANSIT-AREA
0 10.0.0.201 ex
[admin@MikroTik] routing ospf virtual-link>

Virtual link should be configured on both routers

Neighbours

Home menu level: /routing ospf neighbor

Description

The submenu provides an access to the list of OSPF neighbors, id est the routers adjacent to the current router, and supplies brief statistics
Property Description

address *(read-only: IP address)* - appropriate IP address of the neighbour

backup-dr-id *(read-only: IP address)* - backup designated router's router id for this neighbor

db-summaries *(read-only: integer)* - number of records in link-state database advertised by the neighbour

dr-id *(read-only: IP address)* - designated router's router id for this neighbor

ls-requests *(read-only: integer)* - number of link-state requests

ls-retransmits *(read-only: integer)* - number of link-state retransmits

priority *(read-only: integer)* - the priority of the neighbour which is used in designated router elections via Hello protocol on this network

router-id *(read-only: IP address)* - the router-id parameter of the neighbour

state *(read-only: Down | Attempt | Init | 2-Way | ExStart | Exchange | Loading | Full)* - the state of the connection:

- **Down** - the connection is down
- **Attempt** - the router is sending Hello protocol packets
- **Init** - Hello packets are exchanged between routers to create a Neighbour Relationship
- **2-Way** - the routers add each other to their Neighbour database and they become neighbours
- **ExStart** - the DR (Designated Router) and BDR (Backup Designated Router) create an adjacency with each other and they begin creating their link-state databases using Database Description Packets
- **Exchange** - is the process of discovering routes by exchanging Database Description Packets
- **Loading** - receiving information from the neighbour
- **Full** - the link-state databases are completely synchronized. The routers are routing traffic and continue sending each other hello packets to maintain the adjacency and the routing information

state-changes *(read-only: integer)* - number of connection state changes

Notes

The neighbour's list also displays the router itself with 2-Way state

Example

The following text can be observed just after adding an OSPF network:

```
admin@MikroTik] routing ospf> neighbor print
router-id=10.0.0.204 address=10.0.0.204 priority=1 state="2-Way"
    state-changes=0 ls-retransmits=0 ls-requests=0 db-summaries=0
    dr-id=0.0.0.0 backup-dr-id=0.0.0.0
[admin@MikroTik] routing ospf>
```

General Information
OSPF backup without using a tunnel

Let us assume that the link between the routers OSPF-Main and OSPF-peer-1 is the main one. If it goes down, we want the traffic switch over to the link going through the router OSPF-peer-2.

This example shows how to use OSPF for backup purposes, if you are controlling all the involved routers, and you can run OSPF on them.

For this:

1. We introduce an OSPF area with area ID=0.0.0.1, which includes all three routers shown on the diagram.
2. Only the OSPF-Main router will have the default route configured. Its interfaces peer1 and peer2 will be configured for the OSPF protocol. The interface main_gw will not be used for distributing the OSPF routing information.
3. The routers OSPF-peer-1 and OSPF-peer-2 will distribute their connected route information, and receive the default route using the OSPF protocol.

Now let's setup the OSPF_MAIN router.

The router should have 3 NICs:

```plaintext
[admin@OSPF_MAIN] interface> print
Flags: X - disabled, D - dynamic, R - running
#  NAME  TYPE  RX-RATE  MTU
0  main_gw  ether  0  1500
1  to_peer_1  ether  0  1500
2  to_peer_2  ether  0  1500
```

Add all needed ip addresses to interfaces as it is shown here:

```plaintext
[admin@OSPF_MAIN] ip address> print
Flags: X - disabled, I - invalid, D - dynamic
#  ADDRESS  NETWORK  BROADCAST  INTERFACE
0  192.168.0.11/24  192.168.0.0  192.168.0.255  main_gw
1  10.1.0.2/24  10.1.0.0  10.1.0.255  to_peer_1
2  10.2.0.2/24  10.2.0.0  10.2.0.255  to_peer_2
```

You should set distribute-default as if-installed-as-type-2, redistribute-connected as as-type-1 and redistribute-static as as-type-2. Metric-connected, metric-static, metric-rip, metric-bgp should be zero.

```plaintext
[admin@OSPF_MAIN] routing ospf> print
router-id: 0.0.0.0
distribute-default: if-installed-as-type-2
redistribute-connected: as-type-1
redistribute-static: as-type-2
redistribute-rip: no
redistribute-bgp: no
metric-default: 1
metric-connected: 0
metric-static: 0
metric-rip: 0
metric-bgp: 0
```

Define new OSPF area named local_10 with area-id 0.0.0.1:
Add connected networks with area local_10 in ospf network:

Add connected networks with area local_10:

For main router the configuration is done. Next, you should configure OSPF_peer_1 router

Enable following interfaces on OSPF_peer_1:

Assign IP addresses to these interfaces:

Set redistribute-connected as as-type-1. Metric-connected, metric-static, metric-rip, metric-bgp should be zero.

Add the same area as in main router:

Add connected networks with area local_10:
Finally, set up the OSPF_peer_2 router. Enable the following interfaces:

```
[admin@OSPF_peer_2] interface> print
Flags: X - disabled, D - dynamic, R - running
#   NAME   RX-RATE  TX-RATE  MTU
0  R to_main  ether  0        0
1  R to_peer_1 ether  0        0
```

Add the needed IP addresses:

```
[admin@OSPF_peer_2] ip address> print
Flags: X - disabled, I - invalid, D - dynamic
#   ADDRESS  NETWORK  BROADCAST  INTERFACE
0  10.2.0.1/24  10.2.0.0  10.2.0.255  to_main
1  10.3.0.2/24  10.3.0.0  10.3.0.255  to_peer_1
```

Add the same area as in previous routers:

```
[admin@OSPF_peer_2] routing ospf area> print
Flags: X - disabled, I - invalid
#   NAME     AREA-ID   STUB DEFAULT-COST  AUTHENTICATION
0  backbone  0.0.0.0
1  local_10  0.0.0.1   no 1
```

Add connected networks with the same area:

```
[admin@OSPF_peer_2] routing ospf network> print
Flags: X - disabled, I - invalid
#   NETWORK  AREA
0  10.2.0.0/24  local_10
1  10.3.0.0/24  local_10
```

After all routers have been set up as described above, and the links between them are operational, the routing tables of the three routers look as follows:

```
[admin@OSPF_MAIN] ip route> print
Flags: X - disabled, I - invalid, D - dynamic, J - rejected, C - connect, S - static, r - rip, o - ospf, b - bgp
#   DST-ADDRESS   G GATEWAY DISTANCE INTERFACE
0  192.168.0.0/24  110
1  192.168.0.0/24  r 0.0.0.0  0  main_gw
2  10.3.0.0/24     r 10.2.0.1  110  to_peer_2
3  10.2.0.0/24     r 10.1.0.1     10.3.0.0/24  to_peer_1
4  10.2.0.0/24     r 10.1.0.1     10.3.0.0/24  to_peer_1
5  10.1.0.0/24     r 10.0.0.0     10.3.0.0/24  to_peer_1
6  10.1.0.0/24     r 10.0.0.0     10.3.0.0/24  to_peer_1

[admin@OSPF_peer_1] ip route> print
Flags: X - disabled, I - invalid, D - dynamic, J - rejected, C - connect, S - static, r - rip, o - ospf, b - bgp
#   DST-ADDRESS   G GATEWAY DISTANCE INTERFACE
0  192.168.0.0/24  110
1  192.168.0.0/24  r 0.0.0.0  0  main_gw
2  10.3.0.0/24     r 10.1.0.2  110  to_main
3  10.3.0.0/24     r 10.1.0.2  110  to_main
4  10.1.0.0/24     r 10.0.0.0  110  backup
5  10.1.0.0/24     r 10.0.0.0  110  backup
```
Routing tables with Revised Link Cost

This example shows how to set up link cost. Let us assume, that the link between the routers OSPF_peer_1 and OSPF_peer_2 has a higher cost (might be slower, we have to pay more for the traffic through it, etc.).

We should change cost value in both routers: OSPF_peer_1 and OSPF_peer_2 to 50. To do this, we need to add a following interface:

[admin@OSPF_peer_1]
```
routing ospf interface> add interface=backup cost=50
```

After changing the cost settings, we have only one equal cost multipath route left - to the network 10.3.0.0/24 from OSPF_MAIN router.

Routes on OSPF_MAIN router:

[admin@OSPF_MAIN]
```
ip route> print
```

On OSPF_peer_1:

[admin@OSPF_peer_1] > ip route pr

On OSPF_peer_2:
Functioning of the Backup

If the link between routers **OSPF_MAIN** and **OSPF_peer_1** goes down, we have the following situation:

The OSPF routing changes as follows:

Routes on **OSPF_MAIN** router:

```
[admin@OSPF_MAIN] > ip route print
Flags: X - disabled, I - invalid, D - dynamic, J - rejected, C - connect, S - static, r - rip, o - ospf, b - bgp
#   DST-ADDRESS G   GATEWAY DISTANCE INTERFACE
0  Do 192.168.0.0/24 r 10.2.0.2  110  to_main
1  Io 10.3.0.0/24   r 0.0.0.0  0    main_gw
2  Do 192.168.0.0/24 r 10.2.0.1  110  to_peer_2
3  Io 10.2.0.0/24   r 0.0.0.0  0    backup
4  DC 10.2.0.0/24   r 0.0.0.0  0    to_peer_2
5  Io 10.1.0.0/24   r 0.0.0.0  0    to_peer_1
6  DC 10.1.0.0/24   r 0.0.0.0  0    to_main
```

On **OSPF_peer_1**:

```
[admin@OSPF_peer_1] > ip route print
Flags: X - disabled, I - invalid, D - dynamic, J - rejected, C - connect, S - static, r - rip, o - ospf, b - bgp
#   DST-ADDRESS G   GATEWAY DISTANCE INTERFACE
0  Do 192.168.0.0/24 r 10.3.0.2  110  backup
1  Io 192.168.0.0/24   r 0.0.0.0  0    backup
2  DC 10.2.0.0/24   r 0.0.0.0  0    to_main
3  Io 10.1.0.0/24   r 0.0.0.0  0    to_main
4  DC 10.1.0.0/24   r 0.0.0.0  0    to_main
5  DC 10.1.0.0/24   r 0.0.0.0  0    to_main
```

On **OSPF_peer_2**:

```
[admin@OSPF_peer_2] > ip route print
Flags: X - disabled, I - invalid, D - dynamic, J - rejected, C - connect, S - static, r - rip, o - ospf, b - bgp
#   DST-ADDRESS G   GATEWAY DISTANCE INTERFACE
0  Do 192.168.0.0/24 r 10.2.0.2  110  to_main
1  Io 10.3.0.0/24   r 0.0.0.0  0    to_main
2  DC 10.3.0.0/24   r 0.0.0.0  0    to_peer_1
3  Io 10.2.0.0/24   r 0.0.0.0  0    to_peer_1
4  DC 10.2.0.0/24   r 0.0.0.0  0    to_main
5  Do 10.1.0.0/24   r 10.2.0.2  110  to_main
```

The change of the routing takes approximately 40 seconds (the hello-interval setting). If required, this setting can be adjusted, but it should be done on all routers within the OSPF area!
RIP

This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
General Information
 Summary
 Specifications
 Related Documents
 Description
 Additional Documents
General Setup
 Property Description
 Notes
 Example
Interfaces
 Description
 Property Description
 Notes
 Example
Networks
 Description
 Property Description
 Notes
 Example
Neighbors
 Description
 Property Description
 Example
Routes
 Property Description
 Notes
 Example

General Information

Summary

MikroTik RouterOS implements RIP Version 1 (RFC1058) and Version 2 (RFC 2453). RIP enables routers in an autonomous system to exchange routing information. It always uses the best path (the path with the fewest number of hops (i.e. routers)) available.

Specifications
Packages required: **routing**
License required: **level3**
Home menu level: **/routing rip**
Standards and Technologies: **RIPv1, RIPv2**
Hardware usage: **Not significant**

Related Documents

- **Package Management**
- **IP Addresses and ARP**
- **Routes, Equal Cost Multipath Routing, Policy Routing**

Description

Routing Information Protocol (RIP) is one protocol in a series of routing protocols based on Bellman-Ford (or distance vector) algorithm. This Interior Gateway Protocol (IGP) lets routers exchange routing information across a single autonomous system in the way of periodic RIP updates. Routers transmit their own RIP updates to neighboring networks and listen to the RIP updates from the routers on those neighboring networks to ensure their routing table reflects the current state of the network and all the best paths are available. Best path considered to be a path with the fewest hop count (i.e., that include fewer routers).

The routes learned by RIP protocol are installed in the route list (**/ip route print**) with the distance of 120.

Additional Documents

- **RIPv1 Protocol**
- **RIPv2 Protocol**
- **Cisco Systems RIP protocol overview**

General Setup

Property Description

- **redistribute-static** (yes | no; default: no) - specifies whether to redistribute static routes to neighbour routers or not
- **redistribute-connected** (yes | no; default: no) - specifies whether to redistribute connected routes to neighbour routers or not
- **redistribute-ospf** (yes | no; default: no) - specifies whether to redistribute routes learned via OSPF protocol to neighbour routers or not
- **redistribute-bgp** (yes | no; default: no) - specifies whether to redistribute routes learned via bgp protocol to neighbour routers or not
- **metric-static** (integer; default: 1) - specifies metric (the number of hops) for the static routes
- **metric-connected** (integer; default: 1) - specifies metric (the number of hops) for the connected routes
routes
metric-ospf (integer; default: 1) - specifies metric (the number of hops) for the routes learned via OSPF protocol
metric-bgp (integer; default: 1) - specifies metric (the number of hops) for the routes learned via BGP protocol
update-timer (time; default: 30s) - specifies frequency of RIP updates
timeout-timer (time; default: 3m) - specifies time interval after which the route is considered invalid
garbage-timer (time; default: 2m) - specifies time interval after which the invalid route will be dropped from neighbor router table

Notes
The maximum metric of RIP route is 15. Metric higher than 15 is considered 'infinity' and routes with such metric are considered unreachable. Thus RIP cannot be used on networks with more than 15 hops between any two routers, and using redistribute metrics larger that 1 further reduces this maximum hop count.

Example
To enable RIP protocol to redistribute the routes to the connected networks:

```
[admin@MikroTik] routing rip> set redistribute-connected=yes
[admin@MikroTik] routing rip> print
    redistribute-static: no
    redistribute-ospf: no
    redistribute-bgp: no
    metric-static: 1
    metric-ospf: 1
    metric-bgp: 1
    update-timer: 30s
    timeout-timer: 3m
    garbage-timer: 2m
[admin@MikroTik] routing rip>
```

Interfaces
Home menu level: /routing rip interface

Description
In general you do not have to configure interfaces in order to run RIP. This command level is provided only for additional configuration of specific RIP interface parameters.

Property Description
interface (name; default: all) - interface on which RIP runs
 • all - sets defaults for interfaces not having any specific settings
send (v1 | v1.2 | v2; default: v2) - specifies RIP protocol update versions to distribute
receive (v1 | v1-2 | v2; default: v2) - specifies RIP protocol update versions the router will be able to receive

authentication (none | simple | md5; default: none) - specifies authentication method to use for RIP messages
 • none - no authentication performed
 • simple - plain text authentication
 • md5 - Keyed Message Digest 5 authentication

authentication-key (text; default: "") - specifies authentication key for RIP messages

prefix-list-in (name; default: "") - name of the filtering prefix list for received routes

prefix-list-out (name; default: "") - name of the filtering prefix list for advertised routes

Notes

It is recommended not to use RIP version 1 wherever it is possible due to security issues

Example

To add an entry that specifies that when advertising routes through the ether1 interface, prefix list plout should be applied:

```
[admin@MikroTik] routing rip> interface add interface=ether1 \\
  ... prefix-list-out=plout
[admin@MikroTik] routing rip> interface print
  Flags: I - inactive
    0 interface=ether1 receive=v2 send=v2 authentication=none
      authentication-key="" prefix-list-in-plout prefix-list-out-none
```

Networks

Description

To start the RIP protocol, you have to define the networks on which RIP will run.

Property Description

address (IP address/mask; default: 0.0.0.0/0) - specifies the network on which RIP will run. Only directly connected networks of the router may be specified

netmask (IP address; default: 0.0.0.0) - specifies the network part of the address (if it is not specified in the address argument)

Notes

For point-to-point links you should specify the remote endpoint IP address as the network IP address. For this case the correct netmask will be /32.
Example

To enable RIP protocol on 10.10.1.0/24 network:

 [admin@MikroTik] routing rip network> add address=10.10.1.0/24
 [admin@MikroTik] routing rip network> print
 # ADDRESS
 0 10.10.1.0/24
 [admin@MikroTik] routing rip>

Neighbors

Description

This submenu is used to define a neighboring routers to exchange routing information with. Normally there is no need to add the neighbors, if multicasting is working properly within the network. If there are problems with exchanging routing information, neighbor routers can be added to the list. It will force the router to exchange the routing information with the neighbor using regular unicast packets.

Property Description

address (IP address; default: 0.0.0.0) - IP address of neighboring router

Example

To force RIP protocol to exchange routing information with the 10.0.0.1 router:

 [admin@MikroTik] routing rip> neighbor add address=10.0.0.1
 [admin@MikroTik] routing rip> neighbor print
 Flags: I - inactive
 # ADDRESS
 0 10.0.0.1
 [admin@MikroTik] routing rip>

Routes

Home menu level: /routing rip route

Property Description

dst-address (read-only: IP address/mask) - network address and netmask of destination
gateway (read-only: IP address) - last gateway on the route to destination
metric (read-only: integer) - distance vector length to the destination network
from (IP address) - specifies the IP address of the router from which the route was received

Notes

This list shows routes learned by all dynamic routing protocols (RIP, OSPF and BGP)
Example

To view the list of the routes:

```bash
[admin@MikroTik] routing rip route> print
Flags: S - static, R - rip, O - ospf, C - connect, B - bgp
  0 O dst-address=0.0.0.0/32 gateway=10.7.1.254 metric=1 from=0.0.0.0
...
33 R dst-address=159.148.10.104/29 gateway=10.6.1.1 metric=2 from=10.6.1.1
34 R dst-address=159.148.10.112/28 gateway=10.6.1.1 metric=2 from=10.6.1.1
[admin@MikroTik] routing rip route>
```

General Information

Example

Let us consider an example of routing information exchange between MikroTik router, a Cisco router and the ISP (also MikroTik) routers:

- **MikroTik Router Configuration**

  ```bash
  [admin@MikroTik] > interface print
  Flags: X - disabled, D - dynamic, R - running
  #   NAME   TYPE MTU
  0   ether1  ether 1500
  1   ether2  ether 1500
  [admin@MikroTik] > ip address print
  Flags: X - disabled, I - invalid, D - dynamic
  #   ADDRESS NETWORK BROADCAST INTERFACE
  0   10.0.0.174/24 10.0.0.174 10.0.0.255 ether1
  1   192.168.0.1/24 192.168.0.0 192.168.0.255 ether2
  [admin@MikroTik] > ip route print
  Flags: X - disabled, I - invalid, D - dynamic, J - rejected, C - connect, S - static, R - rip, O - ospf, B - bgp
  #   DST-ADDRESS G   GATEWAY DISTANCE INTERFACE
  0   192.168.0.0/24 r 0.0.0.0   0 ether2
  1   10.0.0.0/24    r 0.0.0.0   0 ether1
  [admin@MikroTik] >
  ```

 Note, that no default route has been configured. The route will be obtained using the RIP. The necessary configuration of the RIP general settings is as follows:

  ```bash
  [admin@MikroTik] routing rip> set redistribute-connected=yes
  [admin@MikroTik] routing rip> print
  redistribute-static: no
  redistribute-connected: yes
  redistribute-ospf: no
  redistribute-bgp: no
  metric-static: 1
  metric-connected: 1
  metric-ospf: 1
  metric-bgp: 1
  update-timer: 30s
  timeout-timer: 3m
  garbage-timer: 2m
  [admin@MikroTik] routing rip>
  ```

 The minimum required configuration of RIP interface is just enabling the network associated with the ether1 interface:

  ```bash
  [admin@MikroTik] routing rip network> add address=10.0.0.0/2
  ```
Note, that there is no need to run RIP on the ether2, as no propagation of RIP information is required into the Remote network in this example. The routes obtained by RIP can be viewed in the /routing rip route menu:

The regular routing table is:

```
[admin@MikroTik] routing rip> /ip route print
Flags: X - disabled, I - invalid, D - dynamic, J - rejected,
       C - connect, S - static, R - rip, O - ospf, B - bgp
# DST-ADDRESS  G GATEWAY DISTANCE INTERFACE
  0 R 0.0.0.0/0  r 10.0.0.26  120   ether1
  1 R 192.168.1.0/24 r 10.0.0.26  120   ether1
  2 R 192.168.1.0/24 r 10.0.0.26  120   ether1
  3 DC 192.168.0.0/24 r 0.0.0.0     0   ether2
  4 DC 10.0.0.0/24  r 0.0.0.0     0    ether1
[admin@MikroTik] routing rip>
```

- **Cisco Router Configuration**

Cisco#show running-config

```
... interface Ethernet0
  ip address 10.0.0.26 255.255.255.0
  no ip directed-broadcast
!
interface Serial1
  ip address 192.168.1.1 255.255.255.252
  ip directed-broadcast
!
router rip
  version 2
  redistribute connected
  redistribute static
  network 10.0.0.0
  network 192.168.1.0
!
ip classless
!
```

The routing table of the Cisco router is:

```
Cisco#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route, o - ODR

Gateway of last resort is 192.168.1.2 to network 0.0.0.0

  10.0.0.0/24 is subnetted, 1 subnets
```

Page 107 of 521

Copyright 1999-2005, MikroTik. All rights reserved. Mikrotik, RouterOS and RouterBOARD are trademarks of Mikrotikls SIA. Other trademarks and registered trademarks mentioned herein are properties of their respective owners.
As we can see, the Cisco router has learned RIP routes both from the MikroTik router (192.168.0.0/24), and from the ISP router (0.0.0.0/0 and 192.168.3.0/24).
Routes, Equal Cost Multipath Routing, Policy Routing

Document revision 1.6 (Mon Mar 22 09:10:18 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
 Summary
 Specifications
 Related Documents
 Description
 Additional Documents
Static Routes
 Property Description
 Notes
 Example
Routing Tables
 Description
 Property Description
 Example
Policy Rules
 Property Description
 Notes
 Example
Application Examples
 Standard Policy-Routing Setup

General Information

Summary

The following manual surveys the IP routes management, equal-cost multi-path (ECMP) routing technique, and policy-based routing, which gives the opportunity to select routes in order to restrict the use of network resources to certain classes of customers.

Specifications

Packages required: system
License required: level1
Home menu level: /ip route, /ip policy-routing
Standards and Technologies: IP (RFC 791)
Hardware usage: Not significant

Related Documents
Description

MikroTik RouterOS has following types of routes:

- **Connected Routes** are created automatically when adding address to an interface. These routes specify networks, which can be accessed directly through the interface.
- **Static routes** are user-defined routes that specify the router that can forward traffic to the specified network. They are useful for specifying the default gateway.

You do not need to add routes to networks directly connected to the router, since they are added automatically when adding the IP addresses. However, unless you use some routing protocol (RIP or OSPF), you may want to specify static routes to specific networks, or the default route.

More than one gateway for one destination network may be used. This approach is called 'Equal-Cost Multi-Path Routing' and is used for load balancing (Note that this does not provide failover). With ECMP, a router potentially has several available next hops towards any given destination. A new gateway is chosen for each new source/destination IP pair. This means that, for example, one FTP connection will use only one link, but new connection to a different server will use other link. This also means that routes to often-used sites will always be over the same provider. But on big backbones this should distribute traffic fine. Also this has another good feature - single connection packets do not get reordered and therefore do not kill TCP performance.

Equal cost multipath routes can be created by routing protocols (RIP or OSPF), or adding a static route with multiple gateways (in the form `gateway=x.x.x.x,y.y.y.y`) The routing protocols may create routes with equal cost automatically, if the cost of the interfaces is adjusted properly. For more information on using the routing protocols, please read the corresponding section of the Manual.

Note! In routing process, the router decides which route it will use to send out the packet. Afterwards, when the packet is masqueraded, its source address is taken from the `preferred-source` field.

Additional Documents

- [RFC 2328](#)
- [RFC 2992](#)
- [RFC 1102](#)

Static Routes

Home menu level: `/ip route`

Property Description
dst-address (*IP address/mask*; default: **0.0.0.0/0**) - destination address and network mask, where netmask is number of bits which indicate network number

netmask (*IP address*) - network mask

gateway (*IP address*) - gateway host, that can be reached directly through some of the interfaces. You can specify multiple gateways separated by comma ",,“ for ECMP routes. See more information on that below

preferred-source (*IP address*; default: **0.0.0.0**) - source address of packets, leaving the router via this route. Must be a valid address of the router, which is assigned to the router's interface, through which the packet leaves

- **0.0.0.0** - determined at the time of sending the packet out through the interface

distance (*integer*; default: **1**) - administrative distance of the route. When forwarding a packet, the router will use the route with the lowest administrative distance and reachable gateway

gateway-state (*read-only: r | u*) - shows the status of the next hop. Can be r (reachable) or u (unreachable)

- **(unknown)** - the gateway cannot be reached directly, or the route has been disabled

Notes

You can specify more than one or two gateways in the route. This is called Equal-cost multipath routing. Moreover, you can repeat some routes in the list several times to do a kind of cost setting for gateways.

Note also that if there are more than one public interface and more than one address on any of these interfaces, then policy-routing and equal-cost multipath routing may not work correctly if masquerading is used. To avoid this problem, use action=nat instead of action=masquerade.

Example

To add two static routes to networks 192.168.0.0/16 and 0.0.0.0/0 (the default destination address) on a router with two interfaces and two IP addresses:

```
[admin@MikroTik] ip route> add dst-address=192.168.0.0/16 gateway=10.10.10.2
[admin@MikroTik] ip route> add gateway 10.10.10.1
[admin@MikroTik] ip route> print
Flags: X - disabled, I - invalid, D - dynamic, J - rejected, C - connect, S - static, r - rip, o - ospf, b - bgp
  # DST-ADDRESS     G GATEWAY     DISTANCE INTERFACE
  0 S 192.168.0.0/16 r 10.10.10.2  1     Local
  1 S 0.0.0.0/0     r 10.10.10.1  1     Public
  2 DC 10.10.10.0/24 r 0.0.0.0    0     Public

[admin@MikroTik] ip route> print detail
Flags: X - disabled, I - invalid, D - dynamic, J - rejected, C - connect, S - static, r - rip, o - ospf, b - bgp
  0 S dst-address=192.168.0.0/16 preferred-source=0.0.0.0
gateway=10.10.10.2 gateway-statereachable distance=1
  interface=Local
  1 S dst-address=0.0.0.0/0 preferred-source=0.0.0.0
gateway=10.10.10.1 gateway-statereachable distance=1
  interface=Public
  2 DC dst-address=10.10.10.0/24 preferred-source=10.10.10.1
gateway=0.0.0.0 gateway-statereachable distance=0
  interface=Public
```

To set the **192.168.0.0/16** network is reachable via both **10.10.10.2** and **10.10.10.254** gateways:
Routing Tables

Home menu level: /ip policy-routing

Description

Policy routing allows to select routes in order to variate the use of network resources to certain classes of users (in other words, you can set different routes to the same networks depending on some classifiers). This is implemented using multiple routing tables and a list of rules specifying how these tables should be used.

The Policy Routing is implemented in the MikroTik RouterOS based on source and destination addresses of a packet, the interface the packet arrives to the router and the firewall mark that may be associated with some packets.

When finding the route for a packet, the packet is matched against policy routing rules one after another, until some rule matches the packet. Then action specified in that rule is executed. If no rule matches the packet, it is assumed that there is no route to given host and appropriate action is taken (packet dropped and ICMP error sent back to the source).

If a routing table does not have a route for the packet, next rule after the one that directed to the current table is examined, until the route is found, end of rule list is reached or some rule with action drop or unreachable is hit. Thus it is good to have last rule say "from everywhere to everywhere, all interfaces, lookup main route table", because then gateways can be found (connected routes are entered in the main table only).

Note that the only way for packet to be forwarded is to have some rule direct to some routing table that contains route to packet destination.

Note also that if there are more than one public interface and more than one address on any of these interfaces, then policy-routing and equal-cost multipath routing may not work correctly if masquerading is used. To avoid this problem, use action=nat instead of action=masquerade.

Routing Tables

Routing tables is a way to organize routing rules into groups for a purpose of easy management. These tables can be created/deleted in the /ip policy-routing menu.

The routes in the routing tables are managed the same way as the static routes described above, but in the submenu /ip policy-routing table name submenu, where name is the name of the table.

Property Description

name (name) - table name
Example

There is always a table called **main**, this table cannot be deleted and its name cannot be changed. The **main** table can be managed in the `/ip route` submenu as well:

```
[admin@MikroTik] ip policy-routing> table main
[admin@MikroTik] ip policy-routing table main> print
Flags: X - disabled, I - invalid, D - dynamic, R - rejected
# TYPE DST-ADDRESS G GATEWAY DISTANCE INTERFACE
 0 static 192.168.1.0/24  r 192.168.0.50  1  Local
 1 static 0.0.0.0/0    r 10.0.0.1    1  Public
 2 D  connect 192.168.0.0/24  r 0.0.0.0    0  Local
 3 D  connect 10.0.0.0/24   r 0.0.0.0    0  Public
```

To add a new table named **mt**:

```
[admin@MikroTik] ip policy-routing> add name=mt
[admin@MikroTik] ip policy-routing> print
Flags: D - dynamic
# NAME
 0 mt
 1 D main
```

To add the route to the **10.5.5.0/24** network via **10.0.0.22** gateway to the **mt** table:

```
[admin@MikroTik] ip policy-routing> table mt
[admin@MikroTik] ip policy-routing table mt> add dst-address=10.5.5.0/24 \ 
... gateway=10.0.0.22
```

Policy Rules

Home menu level: `/ip policy-routing rule`

Property Description

- **src-address** (IP address/mask) - source IP address/mask
- **dst-address** (IP address/mask) - destination IP address/mask
- **interface** (name | all; default: all) - interface name through which the packet arrives. Should be 'all' for the rule that should match locally generated or masqueraded packets, since at the moment of processing the routing table these packets have interface name set to loopback
- **flow** (name; default: '') - flow mask of the packet to be matched by this rule. To add a flow, use '/ip firewall mangle' commands
- **action** (drop | unreachable | lookup; default: unreachable) - action to be processed on packets matched by this rule:
• **drop** - silently drop packet
• **unreachable** - reply that destination host is unreachable
• **lookup** - lookup route in given routing table

Notes

You can use policy routing even if you use masquerading on your private networks. The source address will be the same as it is in the local network. In previous versions of RouterOS the source address changed to **0.0.0.0**

It is impossible to recognize peer-to-peer traffic from the first packet. Only already established connections can be matched. That also means that in case source NAT is treating Peer-to-Peer traffic differently from the regular traffic, Peer-to-Peer programs will not work (general application is policy-routing redirecting regular traffic through one interface and Peer-to-Peer traffic - through another). A known workaround for this problem is to solve it from the other side: making not Peer-to-Peer traffic to go through another gateway, but all other useful traffic go through another gateway. In other words, to specify what protocols (HTTP, DNS, POP3, etc.) will go through the gateway A, leaving all the rest (so Peer-to-Peer traffic also) to use the gateway B (it is not important, which gateway is which; it is only important to keep Peer-to-Peer together with all traffic except the specified protocols)

Example

To add the rule specifying that all the packets from the 10.0.0.144 host should lookup the **mt** routing table:

```
[admin@MikroTik] ip policy-routing rule> add src-address=10.0.0.144/32 \n... table=mt action=lookup
[admin@MikroTik] ip policy-routing rule> print
Flags: X - disabled, I - invalid
# SRC-ADDRESS DST-ADDRESS INTE... FLOW ACTION TABLE
0 0.0.0.0/0 0.0.0.0/0 all lookup main
1 10.0.0.144/32 0.0.0.0/0 all lookup mt
```

Application Examples

Standard Policy-Routing Setup

Suppose we want packets coming from 1.1.1.0/24 to use gateway 10.0.0.1 and packets from 2.2.2.0/24 to use gateway 10.0.0.2. And the rest of packets will use gateway 10.0.0.254:

Command sequence to achieve this:

1. Add 3 new routing tables. One for local network **1.1.1.0/24**, one for network **2.2.2.0/24** and the rest for all other networks (**0.0.0.0/0**):

```
[admin@MikroTik] ip policy-routing> add name=from_net1; add name=from_net2; add name=rest
[admin@MikroTik] ip policy-routing> print
Flags: D - dynamic
# NAME
0 from_net1
1 from_net2
2 rest
```
2 Create the default route in each of the tables:

```plaintext
[admin@MikroTik] ip policy-routing> table from_net1 add gateway=10.0.0.1
[admin@MikroTik] ip policy-routing> table from_net2 add gateway=10.0.0.2
[admin@MikroTik] ip policy-routing> table rest add gateway=10.0.0.254
[admin@MikroTik] ip policy-routing> table from_net1 print
Flags: X - disabled, I - invalid, D - dynamic, R - rejected
# TYPE DST-ADDRESS G GATEWAY DISTANCE INTERFACE
 0 static 0.0.0.0/0 u 10.0.0.1 1 Public
[admin@MikroTik] ip policy-routing>
[admin@MikroTik] ip policy-routing> table from_net2 print
Flags: X - disabled, I - invalid, D - dynamic, R - rejected
# TYPE DST-ADDRESS G GATEWAY DISTANCE INTERFACE
 0 static 0.0.0.0/0 u 10.0.0.2 1 Public
[admin@MikroTik] ip policy-routing>
[admin@MikroTik] ip policy-routing> table rest print
Flags: X - disabled, I - invalid, D - dynamic, R - rejected
# TYPE DST-ADDRESS G GATEWAY DISTANCE INTERFACE
 0 static 0.0.0.0/0 u 10.0.0.254 1 Public
[admin@MikroTik] ip policy-routing>
```

3. Create rules that will direct traffic from sources to given tables, and arrange them in the desired order:

```plaintext
[admin@MikroTik] ip policy-routing> rule
[admin@MikroTik] ip policy-routing rule> print
Flags: X - disabled, I - invalid
# SRC-ADDRESS DST-ADDRESS INT... FLOW ACTION
 0 0.0.0.0/0 0.0.0.0/0 all lookup
[admin@MikroTik] ip policy-routing rule> add src-address=1.1.1.0/24 \\ ...
[admin@MikroTik] ip policy-routing rule> add src-address=2.2.2.0/24 \\ ...
[admin@MikroTik] ip policy-routing rule> add src-address=0.0.0.0/0 \\ ...
[admin@MikroTik] ip policy-routing rule> print
Flags: X - disabled, I - invalid
# SRC-ADDRESS DST-ADDRESS INTERFACE FLOW ACTION
 0 0.0.0.0/0 0.0.0.0/0 all lookup
 1 1.1.1.0/24 0.0.0.0/0 all lookup
 2 2.2.2.0/24 0.0.0.0/0 all lookup
 3 0.0.0.0/0 0.0.0.0/0 all lookup
[admin@MikroTik] ip policy-routing rule>
```

Here the rule #0 is needed to reach directly connected networks. Note that there (in table main) is only directly connected routes! The rules #1 and #2 process local networks 1.1.1.0/24, which is routed through the gateway 10.0.0.1, and 2.2.2.0/24, which is routed through the gateway 10.0.0.2. Rule #3 handles packets originated from other networks (0.0.0.0/0).
BGP (Border Gateway Protocol)

Document revision 1.2 (Thu Mar 04 19:34:34 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
General Information
 Summary
 Specifications
 Related Documents
 Description
 Additional Documents
BGP Setup
 Property Description
 Notes
 Example
BGP Network
 Description
 Property Description
 Notes
 Example
BGP Peers
 Description
 Property Description
 Example
Troubleshooting
 Description

General Information

Summary

The Border Gateway Protocol (BGP) allows setting up an interdomain dynamic routing system that automatically generates the routing table for routing between autonomous systems (AS).

MikroTik RouterOS supports BGP Version 4, as defined in RFC1771.

The MikroTik RouterOS implementation of the BGP has filtering (using prefix lists) feature

Specifications

Packages required: routing
License required: level3
Home menu level: /routing bgp
Standards and Technologies: RFC1771
Hardware usage: requires additional RAM for storing routing information (128MB recommended)
Related Documents

- Package Management
- IP Addresses and ARP
- Routes, Equal Cost Multipath Routing, Policy Routing
- Prefix Lists

Description

The Border Gateway Protocol (BGP) is an Exterior Gateway Protocol (EGP). It allows setting up an interdomain routing system that automatically guarantees the loop-free exchange of routing information between autonomous systems (AS). It is widely used in companies assigned with a definite IP address ranges and connected to a number of ISPs simultaneously so that if one of the links is down, the IP address ranges are still reachable via another ISP.

The MikroTik RouterOS implementation of the BGP supports filtering with prefix lists, that is used for filtering received and sent routing information.

The routes learned by BGP protocol are installed in the route list with the distance of 200 for iBGP (Internal BGP) routes and of 20 for eBGP (External BGP) routes.

Additional Documents

- http://www.ietf.org/rfc/rfc1771.txt

BGP Setup

Home menu level: /routing bgp

Property Description

enabled (yes | no ; default: no) - enable or disable BGP
as (integer ; default: 1) - autonomous system number
router-id (IP address ; default: 0.0.0.0) - the Router identification in form of an IP address
redistribute-connected (yes | no) - if enabled, the router will redistribute the information about all connected routes, i.e., routes to the networks that can be directly reached
redistribute-static (yes | no ; default: no) - if enabled, the router will redistribute the information about all static routes added to its routing database, i.e., routes that have been created using the /ip route add command on the router
redistribute-rip (yes | no ; default: no) - if enabled, the router will redistribute the information about all routes learned by RIP protocol
redistribute-ospf (yes | no ; default: no) - if enabled, the router will redistribute the information about all routes learned by the OSPF protocol
state (read-only: disabled | running | terminating) - status of the BGP

- **disabled** - not working, has been disabled
- **running** - working
- **terminating** - shutting down, flushing all route information

Notes

Usually, you want to redistribute connected and static routes, if any. Therefore change the settings for these arguments and proceed to the BGP networks.

Example

To enable BGP protocol specifying that router 192.168.0.206, that belongs to the 65002 AS, should redistribute the connected routes

```
[admin@MikroTik] routing bgp>
[admin@MikroTik] routing bgp> print
    enabled: yes
    as: 65002
    router-id: 192.168.0.206
    redistribute-static: no
    redistribute-connected: yes
    redistribute-rip: no
    redistribute-ospf: no
    state: running
[admin@MikroTik] routing bgp>
```

BGP Network

Home menu level: /routing bgp network

Description

BGP Networks is a list of the networks to be advertised.

Property Description

network (IP address/mask; default: 0.0.0.0/0) - network to advertise

Notes

You can add to the list as many networks as required.

The router is not checking whether the network is in the routing table, it always advertises all the routes that are specified here.

Note the difference with OSPF, that use network list for different purpose - to determine where to send updates.

Example

To advertise the network 159.148.150.192/27:
[admin@modux] routing bgp network> add network=159.148.150.192/27
[admin@modux] routing bgp network> print
 # NETWORK
 0 159.148.150.192/27
[admin@modux] routing bgp network>

BGP Peers

Home menu level: /routing bgp peer

Description

You need to specify the BGP peer with whom you want to exchange the routing information. The BGP exchanges routing information only if it can establish a TCP connection to its peer. You can add as many peers as required.

Property Description

remote-address (IP address; default: 0.0.0.0) - address of the remote peer
remote-as (integer; default: 0) - AS number of the remote peer
multihop (yes | no; default: no) - if enabled, allows BGP sessions, even when the neighbour is not on a directly connected segment. The multihop session is not established if the only route to the multi-hop peer's address is the default route (0.0.0.0/0)
route-reflect (yes | no; default: no) - defines whether to redistribute further the routes learned from router of the same AS or not. If enabled, can significantly reduce traffic between routers in the same AS
prefix-list-in (name; default: '') - name of the filtering prefix list for receiving routes
prefix-list-out (name; default: '') - name of the filtering prefix list for advertising routes
state (read-only: connected | not-connected) - the status of the BGP connection to the peer
routes-received - the number of received routes from this peer

Example

To enable routing information exchange with the neighbour (non-multihop) 192.168.0.254 that belongs to 65002 AS:

[admin@MikroTik] routing bgp peer> add remote-address=192.168.0.254 remote-as=65002
[admin@MikroTik] routing bgp peer> print
 # REMOTE-ADDRESS REMOTE-AS MULTIHOP ROUTE-REFLECT PREFIX-LIS... PREFIX-LI...
 0 192.168.0.254 65002 no no none none
[admin@MikroTik] routing bgp peer print status
 # REMOTE-ADDRESS REMOTE-AS STATE ROUTES-RECEIVED
 0 192.168.0.254 65002 connected 1
[admin@MikroTik] routing bgp>

Troubleshooting

Description

• The BGP does not learn routes from its peer
Try to see if the peer is directly attached, or you should use the `multihop` flag when defining the peer and static routing to get the connection between the peers.

- *I can ping from one peer to the other one, but no routing exchange takes place*

 Check the status of the peer using `/routing bgp peer print detail` command. See if you do not have firewall that blocks TCP port 179.
ARLAN 655 Wireless Client Card

Document revision 1.1 (Fri Mar 05 08:12:25 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
General Information
 Summary
 Specifications
 Related Documents
Installation
 Example
Wireless Interface Configuration
 Description
 Property Description
 Example
Troubleshooting
 Description

General Information

Summary

The MikroTik RouterOS supports Arlan 655 Wireless Interface client cards. This card fits in the ISA expansion slot and provides transparent wireless communications to other network nodes.

Specifications

Packages required: arlan
License required: level4
Home menu level: /interface arlan
Hardware usage: Not significant

Related Documents

- Package Management
- Device Driver List
- IP Addresses and ARP
- Log Management

Installation

Example
To add the driver for Arlan 655 adapter, do the following:

```
[admin@MikroTik]$ driver add name=arlan io=0xD000
[admin@MikroTik]$ driver print
Flags: I - invalid, D - dynamic
# DRIVER IRQ IO MEMORY ISDN-PROTOCOL
  0 D RealTek 8139
  1 Arlan 655 0xD000
[admin@MikroTik]$ driver>
```

Wireless Interface Configuration

Home menu level: `/interface arlan`

Description

The wireless card status can be obtained from the two LEDs: the Status LED and the Activity LED.

<table>
<thead>
<tr>
<th>Status</th>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amber</td>
<td>Amber</td>
<td>ARLAN 655 is functional but nonvolatile memory is not configured</td>
</tr>
<tr>
<td>Blinking Green</td>
<td>Don't Care</td>
<td>ARLAN 655 not registered to an AP (ARLAN mode only)</td>
</tr>
<tr>
<td>Green</td>
<td>Off</td>
<td>Normal idle state</td>
</tr>
<tr>
<td>Green</td>
<td>Green Flash</td>
<td>Normal active state</td>
</tr>
<tr>
<td>Red</td>
<td>Amber</td>
<td>Hardware failure</td>
</tr>
<tr>
<td>Red</td>
<td>Red</td>
<td>Radio failure</td>
</tr>
</tbody>
</table>

Property Description

- **name** (name; default: arlanN) - assigned interface name
- **mtu** (integer; default: 1500) - Maximum Transmission Unit
- **mac-address** (MAC address) - Media Access Control address
- **frequency** (2412 | 2427 | 2442 | 2457 | 2465; default: 2412) - channel frequency in MHz
- **bitrate** (1000 | 2000 | 354 | 500; default: 2000) - data rate in Kbit/s
- **sid** (integer; default: 0x13816788) - System Identifier. Should be the same for all nodes on the radio network. Must be an even number with maximum length 31 character
- **add-name** (text; default: test) - card name (optional). Must contain less than 16 characters.
- **arp** (disabled | enabled | proxy-arp | reply-only; default: enabled) - Address Resolution Protocol setting
- **tma-mode** (yes | no; default: no) - Networking Registration Mode:
 - yes - ARLAN
 - no - NON ARLAN
Example

[admin@MikroTik] > interface print
Flags: X - disabled, D - dynamic, R - running
NAME TYPE MTU
0 R outer ether 1500
1 X arlan1 arlan 1500

[admin@MikroTik] interface> enable 1
[admin@MikroTik] > interface print
Flags: X - disabled, D - dynamic, R - running
NAME TYPE MTU
0 R outer ether 1500
1 R arlan1 arlan 1500

More configuration and statistics parameters can be found under the /interface arlan menu:

[admin@MikroTik] interface arlan> print
Flags: X - disabled, R - running
0 R name="arlan1" mtu=1500 mac-address=00:40:96:22:90:C8 arp=enabled
 frequency=2412 bitrate=2000 tma-mode=no card-name="test"
sid=0x13816788

[admin@MikroTik] interface arlan>

You can monitor the status of the wireless interface:

[admin@MikroTik] interface arlan> monitor 0
registered: no
access-point: 00:00:00:00:00:00
backbone: 00:00:00:00:00:00

[admin@MikroTik] interface arlan>

Suppose we want to configure the wireless interface to accomplish registration on the AP with a sid 0x03816788. To do this, it is enough to change the argument value of sid to 0x03816788 and tma-mode to yes:

[admin@MikroTik] interface arlan> set 0 sid=0x03816788 tma-mode=yes
[admin@MikroTik] interface arlan> monitor 0
access-point: 00:40:88:23:91:F8
backbone: 00:40:88:23:91:F9

[admin@MikroTik] interface arlan>

Troubleshooting

Description

Keep in mind, that not all combinations of I/O base addresses and IRQs may work on particular motherboard. It is recommended that you choose an IRQ not used in your system, and then try to find an acceptable I/O base address setting. As it has been observed, the IRQ 5 and I/O 0x300 or 0x180 will work in most cases.

- **The driver cannot be loaded because other device uses the requested IRQ.**
 Try to set different IRQ using the DIP switches.

- **The requested I/O base address cannot be used on your motherboard.**
 Try to change the I/O base address using the DIP switches.

- **The pc interface does not show up under the interfaces list**
Obtain the required license for 2.4/5GHz Wireless Client feature.

- **The wireless card does not register to the Access Point**
 Check the cabling and antenna alignment.
Bridge

Document revision 1.4 (Wed Feb 02 17:06:55 GMT 2005)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
General Information
 Summary
 Quick Setup Guide
 Specifications
 Related Documents
 Description
 Additional Documents
Bridge Interface Setup
 Description
 Property Description
 Notes
 Example
Port Settings
 Description
 Property Description
 Example
Bridge Monitoring
 Description
 Property Description
 Example
Bridge Port Monitoring
 Description
 Property Description
 Example
Bridge Host Monitoring
 Property Description
 Example
Bridge Firewall
 Description
 Property Description
 Drop broadcast packets
 Drop IP, ARP and RARP
 Application Example
 Example
 Troubleshooting
 Description

General Information

Summary
MAC level bridging of Ethernet, Ethernet over IP (EoIP), Prism, Atheros and RadioLAN interfaces are supported. All 802.11b and 802.11a client wireless interfaces (both ad-hoc and infrastructure or station modes) do not support this because of the limitations of 802.11 - it is possible to bridge over them using the Ethernet over IP protocol (please see documentation on EoIP).

For preventing loops in a network, you can use the Spanning Tree Protocol (STP). This protocol also makes redundant paths possible.

Features include:

- Spanning Tree Protocol (STP)
- Multiple bridge interfaces
- Bridge associations on a per interface basis
- Protocol can be selected to be forwarded or discarded
- MAC address table can be monitored in real time
- IP address assignment for router access
- Bridge interfaces can be firewalled

Quick Setup Guide

To put interface `ether1` and `ether2` in a bridge.

1. Add a bridge interface, called **MyBridge**:
   ```
   /interface bridge add name="MyBridge" disabled=no
   ```

2. Add `ether1` and `ether2` to **MyBridge** interface:
   ```
   /interface bridge port set ether1,ether2 bridge=MyBridge
   ```

Specifications

Packages required: **system**
License required: **level4**
Home menu level: `/interface bridge`
Standards and Technologies: **Media Access Control**, **IEEE801.1D**
Hardware usage: **Not significant**

Related Documents

- **Package Management**
- **IP Addresses and ARP**
- **EoIP**
- **Firewall Filters**

Description

Ethernet-like networks (Ethernet, Ethernet over IP, IEEE802.11 Wireless interfaces in AP mode)
can be connected together using MAC Bridges. The bridge feature allows the interconnection of stations connected to separate LANs (using EoIP, geographically distributed networks can be bridged as well if any kind of IP network interconnection exists between them) as if they were attached to a single LAN. As bridges are transparent, they do not appear in traceroute list, and no utility can make a distinction between a host working in one LAN and a host working in another LAN if these LANs are bridged (depending on the way the LANs are interconnected, latency and data rate between hosts may vary).

Additional Documents

http://ebtables.sourceforge.net/

Bridge Interface Setup

Home menu level: `/interface bridge`

Description

To bridge a number of networks into one bridge, a bridge interface should be created, that will group all the bridged interfaces. One MAC address will be assigned to all the bridged interfaces.

Property Description

- **ageing-time** (time; default: `5m`) - how long the host information will be kept in the bridge database
- **arp** (disabled | enabled | proxy-arp | reply-only; default: enabled) - Address Resolution Protocol setting
- **forward-delay** (time; default: `15s`) - time which is spent in listening/learning state
- **forward-protocols** (multiple choice: ip, arp, appletalk, ipx, ipv6, other; default: ip, arp, appletalk, ipx, ipv6, other) - list of forwarded protocols
 - **other** - all other protocols than AppleTalk, ARP, IP, IPv6, or IPX, e.g., NetBEUI, VLAN, etc.
- **garbage-collection-interval** (time; default: `4s`) - how often to drop old host entries in the bridge database
- **mac-address** (read-only: MAC address) - Media Access Control address for the interface
- **mtu** (integer; default: 1500) - Maximum Transmission Unit
- **name** (name; default: bridgeN) - a descriptive name of the interface
- **priority** (integer: 0..65535; default: 32768) - bridge interface priority. The priority argument is used by Spanning Tree Protocol to determine, which port remains enabled if two (or even more) ports form a loop
- **stp** (no | yes; default: no) - whether to enable or disable the Spanning Tree Protocol

Notes

forwarded-protocols is a simple filter that also affects the locally-destined and locally-originated packets. So disabling **ip** protocol you will not be able to communicate with the router from the bridged interfaces.
Always take care not to bridge virtual interfaces with their respective parent interfaces.

Example

To add and enable a bridge interface that will forward all the protocols:

```
[admin@MikroTik] interface bridge> add; print
Flags: X - disabled, R - running
  0 X name="bridge1" mtu=1500 arp-enabled mac-address=00:00:00:00:00:00
    forward-protocols=ip,arp,appletalk,ipx,ipv6,other stp=no priority=32768
    ageing-time=5m forward-delay=15s garbage-collection-interval=4s
    hello-time=2s max-message-age=20s
[admin@MikroTik] interface bridge> enable 0
```

Port Settings

Home menu level: `/interface bridge port`

Description

The submenu is used to group interfaces in a particular bridge interface.

Property Description

- **bridge** *(name ; default: none)* - the bridge interface the respective interface is grouped in
 - **none** - the interface is not grouped in a bridge

- **interface** *(read-only: name)* - interface name

- **path-cost** *(integer : 0 ..65535 ; default: 10)* - path cost to the interface, used by STP to determine the 'best' path

- **priority** *(integer : 0 ..255 ; default: 128)* - interface priority compared to other interfaces, which are destined to the same network

Example

To group *ether1* and *ether2* in the *bridge1* bridge:

```
[admin@MikroTik] interface bridge port> set ether1,ether2 bridge=bridge1
[admin@MikroTik] interface bridge port> print
  # INTERFACE  BRIDGE PRIORITY  PATH-COST
  0  ether1  bridge1   128   10
  1  ether2  bridge1   128   10
  2  wlan1   none      128   10
[admin@MikroTik] interface bridge port>
```

Bridge Monitoring

Command name: `/interface bridge monitor`

Description

Used to monitor the current status of a bridge.
Property Description

bridge-id (text) - the bridge ID, which is in form of bridge-priority.bridge MAC Address

designated-root (text) - ID of the root bridge

path-cost (integer) - the total cost of path along to the root-bridge

root-port (name) - port to which the root bridge is connected to

Example

To monitor a bridge:

```
[admin@MikroTik] interface bridge> monitor bridge1
  bridge-id: 32768.00:02:6F:01:CE:31
  designated-root: 32768.00:02:6F:01:CE:31
  root-port: ether2
  path-cost: 180

[admin@MikroTik] interface bridge>
```

Bridge Port Monitoring

Command name: `/interface bridge port monitor`

Description

Statistics of an interface that belongs to a bridge

Property Description

designated-port (text) - port of designated-root bridge

designated-root (text) - ID of bridge, which is nearest to the root-bridge

port-id (integer) - port ID, which represents from port priority and port number, and is unique

status (disabled | blocking | listening | learning | forwarding) - the status of the bridge port:
 • disabled - the interface is disabled. No frames are forwarded, no Bridge Protocol Data Units (BPDUs) are heard
 • blocking - the port does not forward any frames, but listens for BPDUs
 • listening - the port does not forward any frames, but listens to them
 • learning - the port does not forward any frames, but learns the MAC addresses
 • forwarding - the port forwards frames, and learns MAC addresses

Example

To monitor a bridge port:

```
[admin@MikroTik] interface bridge port> mo 0
  status: forwarding
  port-id: 28417
  designated-root: 32768.00:02:6F:01:CE:31
  designated-bridge: 32768.00:02:6F:01:CE:31
  designated-port: 28417
```
Bridge Host Monitoring

Command name: /interface bridge host

Property Description

- **age** (read-only: time) - the time since the last packet was received from the host
- **bridge** (read-only: name) - the bridge the entry belongs to
- **mac-address** (read-only: MAC address) - host's MAC address
- **on-interface** (read-only: name) - which of the bridged interfaces the host is connected to

Example

To get the active host table:

```
[admin@MikroTik] interface bridge host> print
Flags: L - local
BRIDGE MAC-ADDRESS ON-INTERFACE AGE
bridge1 00:00:B4:5B:A6:58 ether1 4m48s
bridge1 00:30:4F:18:58:17 ether1 4m50s
bridge1 00:50:08:00:00:F5 ether1 0s
bridge1 00:50:08:00:00:F6 ether2 0s
bridge1 00:60:52:0B:B4:81 ether1 4m50s
bridge1 00:C0:DF:07:5E:E6 ether1 4m56s
bridge1 00:E0:C5:6E:23:25 prism1 4m48s
bridge1 00:E0:F7:7F:0A:B8 ether1 1s
[admin@MikroTik] interface bridge host>
```

Bridge Firewall

Home menu level: /interface bridge firewall

Description

Traffic between bridged interfaces can be filtered.

Note that packets between bridged interfaces are also passed through the 'generic' /ip firewall rules, so they even can be NATted. These rules can be used with real, physical receiving/transmitting interfaces, as well as with bridge interface that simply groups bridged interfaces.

Property Description

- **action** (accept | drop | passthrough; default: accept) - action to undertake if the packet matches the rule:
 - **accept** - accept the packet. No action, i.e., the packet is passed through without undertaking any action, and no more rules are processed
 - **drop** - silently drop the packet (without sending the ICMP reject message)
 - **passthrough** - ignore this rule. Acts the same way as a disabled rule, except for ability to count packets
dst-address (IP address/mask; default: 0.0.0.0/0) - destination IP address of the packet

in-interface (name; default: all) - interface the packet has entered the bridge through
- all - any interface

in-interface (name; default: all) - interface the packet is coming into the bridge
- all - any interface

mac-dst-address (MAC address; default: 00:00:00:00:00:00) - MAC address of the destination host

mac-protocol (all | integer; default: all) - the MAC protocol of the packet. Most widely used MAC protocols are (many other exist):
- all - all MAC protocols
- 0x0004 - 802.2
- 0x0800 - IP
- 0x0806 - ARP
- 0x8035 - RARP
- 0x809B - AppleTalk (EtherTalk)
- 0x80F3 - AppleTalk Address Resolution Protocol (AARP)
- 0x8037 - IPX
- 0x8100 - VLAN
- 0x8137 - Novell (old) NetWare IPX (ECONFIG E option)
- 0x8191 - NetBEUI
- 0x86DD - IPv6

mac-src-address (MAC address; default: 00:00:00:00:00:00) - MAC address of the source host

out-interface (name; default: all) - interface the packet is leaving the bridge through
- all - any interface

protocol (all | egp | ggp | icmp | igmp | ip-encap | ip-sec | tcp | udp | integer; default: all) - IP protocol name/number
- all - match all the IP protocols

src-address (IP address/mask; default: 0.0.0.0/0) - source IP address of the packet

Drop broadcast packets

```
[admin@MikroTik] interface bridge firewall> add mac-dst-address=FF:FF:FF:FF:FF:FF action=drop
[admin@MikroTik] interface bridge firewall> print
Flags: X - disabled, I - invalid
0 mac-src-address=00:00:00:00:00:00 in-interface=all
  mac-dst-address=FF:FF:FF:FF:FF:FF out-interface=all mac-protocol=all
  src-address=0.0.0.0/0 dst-address=0.0.0.0/0 protocol=all action=drop
[admin@MikroTik] interface bridge firewall>
```

Drop IP, ARP and RARP

To make a brouter (the router that routes routable (IP in our case) protocols and bridges unroutable protocols), make a rule that drops IP, ARP, and RARP traffic (these protocols should be disabled in
bridge firewall, not in forwarded protocols as in the other case the router will not be able to receive IP packets itself, and thus will not be able to provide routing).

To make bridge, drop IP, ARP and RARP packets:

```
[admin@MikroTik] interface bridge firewall>
```

```
[admin@MikroTik] interface bridge firewall> add mac-protocol=2048 action=drop
```

```
[admin@MikroTik] interface bridge firewall> add mac-protocol=2054 action=drop
```

```
[admin@MikroTik] interface bridge firewall> add mac-protocol=32821 action=drop
```

```
[admin@MikroTik] interface bridge firewall> print
```

```
Flags: X - disabled, I - invalid
0 mac-src-address=00:00:00:00:00:00 in-interface=all
   mac-dst-address=00:00:00:00:00:00 out-interface=all mac-protocol=2048
   src-address=0.0.0.0/0 dst-address=0.0.0.0/0 protocol=all action=drop

1 mac-src-address=00:00:00:00:00:00 in-interface=all
   mac-dst-address=00:00:00:00:00:00 out-interface=all mac-protocol=2054
   src-address=0.0.0.0/0 dst-address=0.0.0.0/0 protocol=all action=drop

2 mac-src-address=00:00:00:00:00:00 in-interface=all
   mac-dst-address=00:00:00:00:00:00 out-interface=all mac-protocol=32821
   src-address=0.0.0.0/0 dst-address=0.0.0.0/0 protocol=all action=drop
```

```
[admin@MikroTik] interface bridge firewall>
```

Application Example

Example

Assume we want to enable bridging between two Ethernet LAN segments and have the MikroTik router be the default gateway for them:

When configuring the MikroTik router for bridging you should do the following:

1. Add a bridge interface
2. Configure the bridge interface
3. Enable the bridge interface
4. Assign an IP address to the bridge interface, if needed

Note that there should be no IP addresses on the bridged interfaces. Moreover, IP address on the bridge interface itself is not required for the bridging to work.

When configuring the bridge settings, each protocol that should be forwarded should be added to the forward-protocols list. The other protocol includes all protocols not listed before (as VLAN).

```
[admin@MikroTik] interface bridge> add forward-protocols=ip,arp,other
[admin@MikroTik] interface bridge> print
```

```
Flags: X - disabled, R - running
0 X name="bridge1" mtu=1500 arp=enabled mac-address=00:00:00:00:00:00
   forward-protocols=ip,arp,other stp=no priority=32768 ageing-time=5m
   forward-delay=15s garbage-collection-interval=4s hello-time=2s
   max-message-age=20s
[admin@MikroTik] interface bridge>
```

The priority argument is used by the Spanning Tree Protocol to determine, which port remains enabled if two ports form a loop.

Next, each interface that should be included in the bridging port table:

```
[admin@MikroTik] interface bridge> port
[admin@MikroTik] interface bridge port> print
```
After setting some interfaces for bridging, the bridge interface should be enabled in order to start using it:

```
[admin@MikroTik] interface bridge> print
Flags: X - disabled, R - running
0 X name="bridge1" mtu=1500 arp=enabled mac-address=00:0B:6B:31:01:6A
   forward-protocols=ip,arp,other stp=no priority=32768 ageing-time=5m
   forward-delay=15s garbage-collection-interval=4s hello-time=2s
   max-message-age=20s
[admin@MikroTik] interface bridge> enable 0
[admin@MikroTik] interface bridge> print
Flags: X - disabled, R - running
0 R name="bridge1" mtu=1500 arp=enabled mac-address=00:0B:6B:31:01:6A
   forward-protocols=ip,arp,other stp=no priority=32768 ageing-time=5m
   forward-delay=15s garbage-collection-interval=4s hello-time=2s
   max-message-age=20s
```

If you want to access the router through unnumbered bridged interfaces, it is required to add an IP address to the bridge interface:

```
[admin@MikroTik] ip address> add address=192.168.0.254/24 interface=bridge1
[admin@MikroTik] ip address> add address=10.1.1.12/24 interface=prism1
```

```
Flags: X - disabled, I - invalid, D - dynamic
# ADDRESS NETWORK BROADCAST INTERFACE
0 192.168.0.254/24 192.168.0.0 192.168.0.255 bridge1
1 10.1.1.12/24 10.1.1.0 10.1.1.255 prism1
```

Note! Assigning an IP address to bridged interfaces ether1 or ether2 has no sense, because the actual interface will be the bridge interface to which these interfaces belong. You can check this by typing `/ip address print detail`

Hosts on LAN segments #1 and #2 should use IP addresses from the same network. 192.168.0.0/24 and have the default gateway set to 192.168.0.254 (MikroTik router).

Troubleshooting

Description

- **After I configure the bridge, there is no ping response from hosts on bridged networks.** It may take up to 20...30s for bridge to learn addresses and start responding.

- **I have added a bridge interface, but no IP traffic is passed.** You should include 'arp' in forwarded protocols list, e.g., 'forward-protocols=ip,arp,other'.
CISCO/Aironet 2.4GHz 11Mbps Wireless Interface

Document revision 1.2 (Mon May 31 20:18:58 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
 Summary
 Specifications
 Related Documents
 Additional Documents
Wireless Interface Configuration
 Description
 Property Description
 Example
 Example
Troubleshooting
 Description
Application Examples
 Point-to-Multipoint Wireless LAN
 Point-to-Point Wireless LAN

General Information

Summary

The MikroTik RouterOS supports the following CISCO/Aironet 2.4GHz Wireless ISA/PCI/PC Adapter hardware:

- Aironet ISA/PCI/PC4800 2.4GHz DS 11Mbps Wireless LAN Adapters (100mW)
- Aironet ISA/PCI/PC4500 2.4GHz DS 2Mbps Wireless LAN Adapters (100mW)
- CISCO AIR-PCI340 2.4GHz DS 11Mbps Wireless LAN Adapters (30mW)
- CISCO AIR-PCI/PC350/352 2.4GHz DS 11Mbps Wireless LAN Adapters (100mW)

Specifications

Packages required: wireless
License required: level4
Home menu level: /interface pc
Standards and Technologies: IEEE802.11b
Hardware usage: Not significant

Related Documents

- Package Management
- **Device Driver List**
- **IP Addresses and ARP**
- **Log Management**

Additional Documents

- **CISCO Aironet 350 Series**

For more information about the CISCO/Aironet PCI/ISA adapter hardware please see the relevant User's Guides and Technical Reference Manuals in PDF format:

- [710-003638a0.pdf](#) for PCI/ISA 4800 and 4500 series adapters
- [710-004239B0.pdf](#) for PC 4800 and 4500 series adapters

Documentation about CISCO/Aironet Wireless Bridges and Access Points can be found in archives:

- [AP48MAN.exe](#) for AP4800 Wireless Access Point
- [BR50MAN.exe](#) for BR500 Wireless Bridge

Wireless Interface Configuration

Home menu level: `/interface pc`

Description

CISCO/Aironet 2.4GHz card is an interface for wireless networks operating in IEEE 802.11b standard. If the wireless interface card is not registered to an AP, the green status led is blinking fast. If the wireless interface card is registered to an AP, the green status led is blinking slow. To set the wireless interface for working with an access point (register to the AP), typically you should set the following parameters:

- The **service set identifier**. It should match the ssid of the AP. Can be blank, if you want the wireless interface card to register to an AP with any ssid. The ssid will be received from the AP, if the AP is broadcasting its ssid.
- The data-rate of the card should match one of the supported data rates of the AP. Data rate 'auto' should work in most cases.

Loading the Driver for the Wireless Adapter

PCI and PC (PCMCIA) cards do not require a 'manual' driver loading, since they are recognized automatically by the system and the driver is loaded at the system startup.

The ISA card requires the driver to be loaded by issuing the following command:

There can be several reasons for a failure to load the driver:

- **The driver cannot be loaded because other device uses the requested IRQ.**

 Try to set different IRQ using the DIP switches.
- **The requested I/O base address cannot be used on your motherboard**
Property Description

ap1 (MAC address) - forces association to the specified access point

ap2 (MAC address) - forces association to the specified access point

ap3 (MAC address) - forces association to the specified access point

ap4 (MAC address) - forces association to the specified access point

arp (disabled | enabled | proxy-arp | reply-only; default: enabled) - Address Resolution Protocol

beacon-period (integer: 20 ..976; default: 100) - Specifies beaconing period (applicable to ad-hoc mode only)

card-type (read-only: text) - your CISCO/Aironet adapter model and type

client-name (text; default: "") - client name

data-rate - data rate in Mbit/s

fragmentation-threshold (integer: 256 ..2312; default: 2312) - this threshold controls the packet size at which outgoing packets will be split into multiple fragments. If a single fragment transmit error occurs, only that fragment will have to be retransmitted instead of the whole packet. Use a low setting in areas with poor communication or with a great deal of radio interference

frequency - Channel Frequency in MHz (applicable to ad-hoc mode only)

join-net (time; default: 10) - an amount of time during which the interface operating in ad-hoc mode will try to connect to an existing network rather than create a new one

- 0 - do not create own network

long-retry-limit (integer: 0 ..128; default: 16) - specifies the number of times an unfragmented packet is retried before it is dropped

mode (infrastructure | ad-hoc; default: infrastructure) - operation mode of the card

modulation (ckk | default | mbok; default: cck) - modulation mode

- ckk - Complementary Code Keying

- mbok - M-ary Bi-Orthogonal Keying

mtu (integer: 0 ..65536; default: 1500) - Maximum Transmission Unit

name (name) - assigned interface name

rts-threshold (integer: 0 ..2312; default: 2312) - determines the packet size at which the interface issues a request to send (RTS) before sending the packet. A low value can be useful in areas where many clients are associating with the access point or bridge, or in areas where the clients are far apart and can detect only the access point or bridge and not each other

rx-antenna (both | default | left | right; default: both) - receive antennas

short-retry-limit (integer: 0 ..128; default: 16) - specifies the number of times a fragmented packet is retried before it is dropped

ssid1 (text; default: tsunami) - establishes the adapter's service set identifier. This value must match the SSID of the system in order to operate in infrastructure mode

ssid2 (text; default: "") - service set identifier 2

ssid3 (text; default: ") - service set identifier 3
Example

Interface informational printouts

```
[admin@MikroTik] > interface print
Flags: X - disabled, D - dynamic, R - running
# NAME     TYPE MTU
0 R ether1 ether 1500
1 X ether2 ether 1500
2 X pc1     pc 1500
[admin@MikroTik] interface> set 1 name aironet
[admin@MikroTik] interface> enable aironet
[admin@MikroTik] > interface print
Flags: X - disabled, D - dynamic, R - running
# NAME     TYPE MTU
0 R ether1 ether 1500
1 X ether2 ether 1500
2 R aironet pc 1500
[admin@MikroTik] > interface pc
[admin@MikroTik] interface pc> print
Flags: X - disabled, R - running
# NAME     MTU
0 R name="aironet" mtu=1500 mac-address=00:40:96:29:2F:80 arp=enabled
client-name="" ssid1="tsunami" ssid2="" ssid3="" mode=infrastructure
data-rate=1Mbit/s frequency=2437MHz modulation=ckk tx-power=100
ap0=00:00:00:00:00:00 ap1=00:00:00:00:00:00 ap2=00:00:00:00:00:00 ap3=00:00:00:00:00:00
ap4=00:00:00:00:00:00 rx-antenna=right tx-antenna=right beacon-period=100
long-retry-limit=16 short-retry-limit=16 rts-threshold=2312
fragmentation-threshold=2312 join-net=10s card-type=PC4800A 3.65
[admin@MikroTik] interface pc>
```

Interface status monitoring

```
[admin@MikroTik] interface pc> monitor 0
synchronized: yes
associated: yes
error-number: 0
[admin@MikroTik] interface pc>
```

Example

Suppose we want to configure the wireless interface to accomplish registration on the AP with a **ssid** 'mt'.

We need to change the value of ssid property to the corresponding value.

To view the results, we can use **monitor** feature.

```
[admin@MikroTik] interface pc> set 0 ssid1 mt
[admin@MikroTik] interface pc> monitor 0
synchronized: yes
associated: yes
frequency: 2412MHz
data-rate: 11Mbit/s
ssid: "mt"
access-point: 00:02:6F:01:5D:FE
access-point-name: ""
signal-quality: 132
signal-strength: -82
error-number: 0
[admin@MikroTik] interface pc>
```
Troubleshooting

Description

Keep in mind, that not all combinations of I/O base addresses and IRQs may work on particular motherboard. It is recommended that you choose an IRQ not used in your system, and then try to find an acceptable I/O base address setting. As it has been observed, the IRQ 5 and I/O 0x300 or 0x180 will work in most cases.

- **The driver cannot be loaded because other device uses the requested IRQ.**
 Try to set different IRQ using the DIP switches.

- **The requested I/O base address cannot be used on your motherboard.**
 Try to change the I/O base address using the DIP switches.

- **The pc interface does not show up under the interfaces list**
 Obtain the required license for 2.4/5GHz Wireless Client feature.

- **The wireless card does not register to the Access Point**
 Check the cabling and antenna alignment.

Application Examples

Point-to-Multipoint Wireless LAN

Let us consider the following network setup with CISCO/Aironet Wireless Access Point as a base station and MikroTik Wireless Router as a client:

The access point is connected to the wired network's HUB and has IP address from the network 10.1.1.0/24.

The minimum configuration required for the AP is:

1. Setting the Service Set Identifier (up to 32 alphanumeric characters). In our case we use ssid "mt".
2. Setting the allowed data rates at 1-11Mbps, and the basic rate at 1Mbps.
3. Choosing the frequency, in our case we use 2442MHz.
4. (For CISCO/Aironet Bridges only) Set Configuration/Radio/Extended/Bridge/mode=access_point. If you leave it to 'bridge_only', it wont register clients.
5. Setting the identity parameters Configuration/Ident: Inaddr, Inmask, and Gateway. These are required if you want to access the AP remotely using telnet or http.

The IP addresses assigned to the wireless interface should be from the network 10.1.1.0/24:

```
[admin@MikroTik] ip address> add address 10.1.1.12/24 interface aironet
[admin@MikroTik] ip address> print
Flags: X - disabled, I - invalid, D - dynamic
# ADDRESS NETWORK BROADCAST INTERFACE
0 10.1.1.12/24 10.1.1.0 10.1.1.255 aironet
```
Point-to-Point Wireless LAN

Point-to-Point links provide a convenient way to connect a pair of clients on a short distance.

Let us consider the following point-to-point wireless network setup with two MikroTik wireless routers:

To establish a point-to-point link, the configuration of the wireless interface should be as follows:

- A unique Service Set Identifier should be chosen for both ends, say "mt"
- A channel frequency should be selected for the link, say 2412MHz
- The operation mode should be set to ad-hoc
- One of the units (slave) should have wireless interface property join-net set to 0s (never create a network), the other unit (master) should be set to 1s or whatever, say 10s. This will enable the master unit to create a network and register the slave unit to it.

The following command should be issued to change the settings for the pc interface of the master unit:

```
[admin@MikroTik] interface pc> set 0 mode=ad-hoc ssid1=mt frequency=2442MHz \
... bitrate=auto
```

For 10 seconds (this is set by the property join-net) the wireless card will look for a network to join. The status of the card is not synchronized, and the green status light is blinking fast. If the card cannot find a network, it creates its own network. The status of the card becomes synchronized, and the green status led becomes solid.

The monitor command shows the new status and the MAC address generated:

```
[admin@MikroTik] interface pc> monitor 0
  synchronized: yes
  associated: yes
  frequency: 2442MHz
  data-rate: 11Mbit/s
  ssid: "mt"
  access-point: 2E:00:B8:01:98:01
  access-point-name: ""
  signal-quality: 35
  signal-strength: -62
  error-number: 0
```

The other router of the point-to-point link requires the operation mode set to **ad-hoc**, the System
Service Identifier set to 'mt', and the channel frequency set to 2412MHz. If the cards are able to establish RF connection, the status of the card should become synchronized, and the green status led should become solid immediately after entering the command:

```
[admin@wnet_gw] interface pc> set 0 mode=ad-hoc ssid1=b_link frequency=2412MHz \
... bitrate=auto
[admin@wnet_gw] interface pc> monitor 0
  synchronized: yes
  associated: no
  frequency: 2442MHz
  data-rate: 11Mbit/s
  ssid: "b_link"
  access-point: 2E:00:B8:01:98:01
  access-point-name: ""
  signal-quality: 131
  signal-strength: -83
  error-number: 0

[admin@wnet_gw] interface pc>
```

As we see, the MAC address under the access-point property is the same as on the first router.

If desired, IP addresses can be assigned to the wireless interfaces of the point-to-point linked routers using a smaller subnet, say 30-bit one:

```
[admin@MikroTik] ip address> add address 192.168.11.1/30 interface aironet
[admin@MikroTik] ip address> print
Flags: X - disabled, I - invalid, D - dynamic
  # ADDRESS NETWORK BROADCAST INTERFACE
  0 192.168.11.1/30 192.168.11.0     192.168.11.3 aironet
[admin@MikroTik] ip address>

The second router will have address 192.168.11.2. The network connectivity can be tested by using ping or bandwidth test:

```
[admin@wnet_gw] ip address> add address 192.168.11.2/30 interface aironet
[admin@wnet_gw] ip address> print
Flags: X - disabled, I - invalid, D - dynamic
 # ADDRESS NETWORK BROADCAST INTERFACE
 0 192.168.11.2/30 192.168.11.0 192.168.11.3 aironet

[admin@wnet_gw] ip address> /ping 192.168.11.1
192.168.11.1 pong: ttl=255 time=3 ms
192.168.11.1 pong: ttl=255 time=1 ms
192.168.11.1 pong: ttl=255 ping interrupted
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max = 1/1.5/3 ms
[admin@wnet_gw] interface pc> /tool bandwidth-test 192.168.11.1 protocol tcp
 status: running
 rx-current: 4.61Mbps
 rx-10-second-average: 4.25Mbps
 rx-total-average: 4.27Mbps
[admin@wnet_gw] interface pc> /tool bandwidth-test 192.168.11.1 protocol udp size 1500
 status: running
 rx-current: 5.64Mbps
 rx-10-second-average: 5.32Mbps
 rx-total-average: 4.87Mbps
```

```
Cyclades PC300 PCI Adapters

Document revision 1.1 (Fri Mar 05 08:13:30 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
General Information
 Summary
 Specifications
 Related Documents
 Additional Documents
Synchronous Interface Configuration
 Description
 Property Description
Troubleshooting
 Description
RSV/V.35 Synchronous Link Applications
 Example

General Information

Summary

The MikroTik RouterOS supports the following Cyclades PC300 Adapter hardware:

- RSV/V.35 (RSV models) with 1 or 2 RS-232/V.35 interfaces on standard DB25/M.34 connector, 5Mbps, internal or external clock
- T1/E1 (TE models) with 1 or 2 T1/E1/G.703 interfaces on standard RJ48C connector, Full/Fractional, internal or external clock
- X.21 (X21 models) with 1 or 2 X.21 on standard DB-15 connector, 8Mbps, internal or external clock

Specifications

Packages required: synchronous
License required: level4
Home menu level: /interface cyclades
Standards and Technologies: X.21, V.35, T1/E1/G.703, Frame Relay, PPP, Cisco-HDLC
Hardware usage: Not significant

Related Documents

- Package Management
- Device Driver List
IP Addresses and ARP

Log Management

Additional Documents

- http://www.cyclades.com/products/6/pc300 - the product on-line documentation

Synchronous Interface Configuration

Home menu level: /interface cyclades

Description

You can install up to four Cyclades PC300 PCI Adapters in one PC box, if you have so many adapter slots and IRQs available.

The Cyclades PC300/RSV Synchronous PCI Adapter comes with a V.35 cable. This cable should work for all standard modems, which have V.35 connections. For synchronous modems, which have a DB-25 connection, you should use a standard DB-25 cable.

Connect a communication device, e.g., a baseband modem, to the V.35 port and turn it on. The MikroTik driver for the Cyclades Synchronous PCI Adapter allows you to unplug the V.35 cable from one modem and plug it into another modem with a different clock speed, and you do not need to restart the interface or router.

Property Description

- **name** (name; default: *cycladesN*) - descriptive interface name
- **mtu** (integer; default: 1500) - Maximum Transmission Unit for the interface
- **line-protocol** (cisco-hdlc | frame-relay | sync-ppp; default: sync-ppp) - line protocol
- **media-type** (E1 | T1 | V24 | V35 | X21; default: V35) - the hardware media used for this interface
- **clock-rate** (integer; default: 64000) - internal clock rate in bps
- **clock-source** (internal | external | tx-internal; default: external) - source clock
- **line-code** (AMI | B8ZS | HDB3 | NRZ; default: B8ZS) - for T1/E1 channels only. Line modulation method:
 - AMI - Alternate Mark Inversion
 - B8ZS - Binary 8-Zero Substitution
 - HDB3 - High Density Bipolar 3 Code (ITU-T)
 - NRZ - Non-Return-To-Zero
- **framing mode** (CRC4 | D4 | ESF | Non-CRC4 | Unframed; default: ESF) - for T1/E1 channels only. The frame mode:
 - CRC4 - Cyclic Redundancy Check 4-bit (E1 Signaling, Europe)
 - D4 - Fourth Generation Channel Bank (48 Voice Channels on 2 T-1s or 1 T-1c)
 - ESF - Extended Superframe Format
• **Non-CRC4** - plain Cyclic Redundancy Check
• **Unframed** - do not check frame integrity

line-build-out (0dB | 7.5dB | 15dB | 22.5dB; default: 0) - for T1 channels only. Line Build Out Signal Level.

rx-sensitivity (long-haul | short-haul; default: short-haul) - for T1/E1 channels only. Numbers of active channels (up to 32 for E1 and up to 24 for T1)

chdlc-keepalive (time; default: 10s) - Cisco-HDLC keepalive interval in seconds

frame-relay-dce (yes | no; default: no) - specifies whether the device operates in Data Communication Equipment mode. The value yes is suitable only for T1 models

frame-relay-lmi-type (ansi | ccitt; default: ansi) - Frame Relay Line Management Interface Protocol type

Troubleshooting

Description

• **The cyclades interface does not show up under the interfaces list**
 Obtain the required license for synchronous feature

• **The synchronous link does not work**
 Check the V.35 cabling and the line between the modems. Read the modem manual

RSV/V.35 Synchronous Link Applications

Example

Let us consider the following network setup with MikroTik Router connected to a leased line with baseband modems and a CISCO router at the other end:

The driver for the Cyclades PC300/RSV Synchronous PCI Adapter should load automatically. The interface should be enabled according to the instructions given above. The IP addresses assigned to the cyclades interface should be as follows:

```
[admin@MikroTik] ip address> add address=1.1.1.1/32 interface=cyclades1
[admin@MikroTik] ip address> print
Flags: X - disabled, I - invalid, D - dynamic
 # ADDRESS   NETWORK  BROADCAST INTERFACE
 0 10.0.0.219/24 10.0.0 10.0.0.255 ether1
 1 1.1.1.1/32 1.1.1.1 1.1.1.1 cyclades1
 2 192.168.0.254/24 192.168.0.0 192.168.0.255 ether2
```

```
[admin@MikroTik] ip address> /ping 1.1.1.2
1.1.1.2 64 byte pong: ttl=255 time=12 ms
1.1.1.2 64 byte pong: ttl=255 time=8 ms
1.1.1.2 64 byte pong: ttl=255 time=7 ms
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 7/9.0/12 ms
```

```
[admin@MikroTik] ip address> /tool flood-ping 1.1.1.2 size=1500 count=50
sent: 50
received: 50
min-rtt: 1
avg-rtt: 1
max-rtt: 5
```

Note that for the point-to-point link the network mask is set to 32 bits, the argument network is set to the IP address of the other end, and the broadcast address is set to 255.255.255.255. The default route should be set to gateway router 1.1.1.2:

```
[admin@MikroTik] ip route> add gateway 1.1.1.2 interface cyclades1
[admin@MikroTik] ip route> print
Flags: X - disabled, I - invalid, D - dynamic, J - rejected, C - connect, S - static, R - rip, O - ospf, B - bgp
# DST-ADDRESS      G GATEWAY  DISTANCE INTERFACE
 0  S  0.0.0.0/0      r 1.1.1.2  1   cyclades1
 1 DC 10.0.0.0/24    r 0.0.0.0  0    ether1
 2 DC 192.168.0.0/24 r 0.0.0.0  0    ether2
 3 DC 1.1.1.2/32     r 0.0.0.0  0    cyclades1
[admin@MikroTik] ip route>
```

The configuration of the CISCO router at the other end (part of the configuration) is:

```
CISCO#show running-config
Building configuration...

Current configuration:
...
! interface Ethernet0
description connected to EthernetLAN
ip address 10.1.1.12 255.255.255.0
!
interface Serial0
description connected to MikroTik
ip address 1.1.1.2 255.255.255.252
serial restart-delay 1
!
ip classless
ip route 0.0.0.0 0.0.0.0 10.1.1.254
!
end
CISCO#
```

Send ping packets to the MikroTik router:

```
CISCO#ping 1.1.1.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 1.1.1.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 28/32/40 ms
CISCO#
```
Driver Management

Document revision 2.1.0 (Fri Mar 05 08:05:49 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Summary
Related Documents
Loading Device Drivers
 Description
 Property Description
 Notes
 Example
Removing Device Drivers
 Description
 Notes
 Notes on PCMCIA Adapters
 Description
 Notes

General Information

Summary

Device drivers represent the software interface part of installed network devices. Some drivers are included in the system software package and some in additional feature packages.

For complete list of supported devices and respective device driver names please consult the 'Related Documents' section.

The device drivers for PCI, miniPCI, PC (PCMCIA) and CardBus cards are loaded automatically. Other network interface cards (most ISA and PCI ISDN cards) require the device drivers to be loaded manually using the `/driver add` command.

Users cannot add their own device drivers, only drivers included in the Mikrotik RouterOS software packages can be used. If you need a support for a device, which hasn't a driver yet, you are welcome to suggest it at suggestion page on our web site.

Home menu level: `/driver`
Standards and Technologies: **PCI**, **ISA**, **PCMCIA**, **miniPCI**, **CardBus**
Hardware usage: **Not significant**

Related Documents

- Package Management
- License Management
- Device Driver List
Loading Device Drivers

Home menu level: /driver

Description

In order to use network interface card which has a driver that is not loaded automatically, *exempli gratia* NE2000 compatible ISA card, you need to add driver manually. This is accomplished by issuing **add** command under the **driver** submenu level.

To see system resources occupied by the installed devices, use the **/system resource io print** and **/system resource irq print** commands.

Property Description

- **io (integer)** - input-output port base address
- **irq (integer)** - interrupt request number
- **isdn-protocol (euro | german ; default: euro)** - line protocol setting for ISDN cards
- **memory (integer ; default: 0)** - shared memory base address
- **name (name)** - driver name

Notes

Not all combinations of **irq** and **io** base addresses might work on your particular system. It is recommended, that you first find an acceptable irq setting and then try different i/o base addresses.

If you need to specify hexadecimal values instead of decimal for the argument values, put **0x** before the number.

To see the list of available drivers, issue the **/driver add name ?** command.

The resource list shows only those interfaces, which are enabled.

Typical io values for ISA cards are **0x280, 0x300** and **0x320**

Example

To view the list of available drivers, do the following:

```
[admin@MikroTik] driver> add name ?
3c509 c101 lance ne2k-isa pc-isa
[admin@MikroTik] driver> add name
```

To see system resources occupied by the devices, use the **/system resource io print** and **/system resource irq print** commands:

```
[admin@MikroTik] system resource> io print
PORT-RANGE OWNER
0x20-0x3F APIC
0x40-0x5F timer
0x60-0x6F keyboard
0x80-0x8F DMA
0xa0-0xbf APIC
0xc0-0xdf DMA
```

Page 146 of 521

Copyright 1999-2005, MikroTik. All rights reserved. Mikrotik, RouterOS and RouterBOARD are trademarks of MikroTikls SIA. Other trademarks and registered trademarks mentioned herein are properties of their respective owners.
Suppose we need to load a driver for a NE2000 compatible ISA card. Assume we had considered the information above and have checked available resources in our system. To add the driver, we must do the following:

```
[admin@MikroTik] driver> add name=ne2k-isa io=0x280
[admin@MikroTik] driver> print
```

```
Flags: I - invalid, D - dynamic
# DRIVER IRQ IO MEMORY ISDN-PROTOCOL
  0 RealTek 8139
  1 Intel EtherExpressPro
  2 PCI NE2000
  3 ISA NE2000 280
  4 Moxa C101 Synchronous C8000
```

Removing Device Drivers

Description

You can remove only statically loaded drivers, *id est* those which do not have the **D** flag before the driver name. The device drivers can be removed only if the appropriate interface has been disabled.
To remove a device driver use the `/driver remove` command. Unloading a device driver is useful when you swap or remove a network device - it saves system resources by avoiding to load drivers for removed devices.

The device driver needs to be removed and loaded again, if some parameters (memory range, i/o base address) have been changed for the network interface card.

Notes on PCMCIA Adapters

Description

Currently only the following PCMCIA-ISA and PCMCIA-PCI adapters are tested to comply with MikroTik RouterOS:

- RICOH PCMCIA-PCI Bridge with RSC475 II or RC476 II chip (one or two PCMCIA ports)
- CISCO/Aironet PCMCIA adapter (ISA and PCI versions) for CISCO/Aironet PCMCIA cards only

Other PCMCIA-ISA and PCMCIA-PCI adapters might not function properly.

Notes

The Ricoh adapter might not work properly with some older motherboards. When recognized properly by the BIOS during the boot up of the router, it should be reported under the PCI device listing as "PCI/CardBus bridge". Try using another motherboard, if the adapter or the PCMCIA card are not recognized properly.

The maximum number of PCMCIA ports for a single system is equal to 8. If you will try to install 9 or more ports (no matter one-port or two-port adapters), no one will be recognized.
Ethernet Interfaces

Document revision 1.2 (Fri Apr 16 12:35:37 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
General Information
 Summary
 Specifications
 Related Documents
 Additional Documents
Ethernet Interface Configuration
 Property Description
 Notes
 Example
Monitoring the Interface Status
 Property Description
 Notes
 Example
Troubleshooting
 Description

General Information

Summary

MikroTik RouterOS supports various types of Ethernet Interfaces. The complete list of supported Ethernet NICs can be found in the Device Driver List.

Specifications

Packages required: system
License required: level1
Home menu level: /interface ethernet
Standards and Technologies: IEEE 802.3
Hardware usage: Not significant

Related Documents

- Package Management
- Device Driver List
- IP Addresses and ARP
- DHCP Client and Server
Additional Documents

- http://www.dcs.gla.ac.uk/~liddellj/nct/ethernet_protocol.html

Ethernet Interface Configuration

Home menu level: /interface ethernet

Property Description

name (name; default: etherN) - assigned interface name, where 'N' is the number of the ethernet interface

arp (disabled | enabled | proxy-arp | reply-only; default: enabled) - Address Resolution Protocol

mtu (integer; default: 1500) - Maximum Transmission Unit

disable-running-check (yes | no; default: yes) - disable running check. If this value is set to 'no', the router automatically detects whether the NIC is connected with a device in the network or not

mac-address (read-only: MAC address) - Media Access Control address of the card

auto-negotiation (yes | no; default: yes) - when enabled, the interface "advertises" its maximum capabilities to achieve the best connection possible

full-duplex (yes | no; default: yes) - defines whether the transmission of data appears in two directions simultaneously

long-cable (yes | no; default: no) - changes the cable length setting (only applicable to NS DP83815/6 cards). For cable lengths of more than 50m, set "long-cable=yes"

speed (10 Mbps | 100 Mbps | 1000 Mbps) - sets the data transmission speed of the interface. By default, this value is the maximal data rate supported by the interface

Notes

For some Ethernet NICs it is possible to blink the LEDs for 10s. Type /interface ethernet blink ether1 and watch the NICs to see the one which has blinking LEDs.

When **disable-running-check** is set to **no**, the router automatically detects whether the NIC is connected to a device in the network or not. When the remote device is not connected (the LEDs are not blinking), the route which is set on the specific interface, becomes invalid.

Example

```
[admin@MikroTik] > interface print
Flags: X - disabled, D - dynamic, R - running
# NAME TYPE RX-RATE TX-RATE MTU
0 ether1 ether 0 0 1500
[admin@MikroTik] > interface enable ether1
[admin@MikroTik] > interface print
Flags: X - disabled, D - dynamic, R - running
# NAME TYPE RX-RATE TX-RATE MTU
0 ether1 ether 0 0 1500
[admin@MikroTik] > interface ethernet
[admin@MikroTik] > interface ethernet> print
Flags: X - disabled, R - running
```
Monitoring the Interface Status

Command name: `/interface ethernet monitor`

Property Description

- **status** *(link-ok | no-link | unknown)* - status of the interface, one of the:
 - **link-ok** - the card has connected to the network
 - **no-link** - the card has not connected to the network
 - **unknown** - the connection is not recognized

- **rate** *(10 Mbps | 100 Mbps | 1000 Mbps)* - the actual data rate of the connection

- **auto-negotiation** *(done | incomplete)* - fast link pulses (FLP) to the adjacent link station to negotiate the SPEED and MODE of the link
 - **done** - negotiation done
 - **incomplete** - negotiation failed

- **full-duplex** *(yes | no)* - whether transmission of data occurs in two directions simultaneously

Notes

See the *IP Addresses and ARP* section of the manual for information how to add **IP addresses** to the interfaces.

Example

```
[admin@MikroTik] interface ethernet> monitor ether1,ether2
  status: link-ok link-ok
  auto-negotiation: done    done
  rate: 100Mbps 100Mbps
  full-duplex: yes    yes
```

Troubleshooting

Description

- **Interface monitor shows wrong information**
 In some very rare cases it is possible that the device driver does not show correct information, but it does not affect the NIC’s performance (of course, if your card is not broken)
FarSync X.21 Interface

Document revision 1.1 (Fri Mar 05 08:14:24 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
General Information
 Summary
 Specifications
 Related Documents
Additional Documents
Synchronous Interface Configuration
 Description
 Property Description
 Example
Troubleshooting
 Description
Synchronous Link Applications
 MikroTik router to MikroTik router
 MikroTik router to MikroTik router P2P using X.21 line
 MikroTik router to Cisco router using X.21 line
 MikroTik router to MikroTik router using Frame Relay

General Information

Summary

The MikroTik RouterOS supports FarSync T-Series X.21 synchronous adapter hardware. These cards provide versatile high performance connectivity to the Internet or to corporate networks over leased lines.

Specifications

Packages required: synchronous
License required: level4
Home menu level: /interface farsync
Standards and Technologies: X.21, Frame Relay, PPP
Hardware usage: Not significant

Related Documents

- Package Management
- Device Driver List
- IP Addresses and ARP
- Log Management
Synchronous Interface Configuration

Home menu level: /interface farsync

Description

You can change the interface name to a more descriptive one using the set command. To enable the interface, use the enable command.

Property Description

hdlc-keepalive: (time; default: 10s) - Cisco HDLC keepalive period in seconds

clock-rate: (integer; default: 64000) - the speed of internal clock

clock-source: (external | internal; default: external) - clock source

disabled: (yes | no; default: yes) - shows whether the interface is disabled

frame-relay-dce: (yes | no; default: no) - operate in Data Communications Equipment mode

frame-relay-lmi-type: (ansi | ccitt; default: ansi) - Frame Relay Local Management Interface type

line-protocol: (cisco-hdlc | frame-relay | sync-ppp; default: sync-ppp) - line protocol

media-type: (V24 | V35 | X21; default: V35) - type of the media

mtu: (integer; default: 1500) - Maximum Transmit Unit

name: (name; default: farsyncN) - assigned interface name

Example

```
[admin@MikroTik] > interface print
Flags: X - disabled, D - dynamic, R - running
   #  NAME    TYPE    MTU
   0  ether1  ether    1500
   1  farsync1 farsync 1500
   2  farsync2 farsync 1500

[admin@MikroTik] interface>
[admin@MikroTik] interface> enable 1
[admin@MikroTik] interface> enable farsync2
[admin@MikroTik] > interface print
Flags: X - disabled, D - dynamic, R - running
   #  NAME    TYPE    MTU
   0  ether1  ether    1500
   1  farsync1 farsync 1500
   2  farsync2 farsync 1500

[admin@MikroTik] interface> farsync
[admin@MikroTik] interface farsync> print
Flags: X - disabled, D - running
   #  NAME     mtu    line-protocol media-type
   0  farsync1 1500  sync-ppp     V35
      clock-rate=64000 clock-source=external hdlc-keepalive=10s
      frame-relay-lmi-type=ansi frame-relay-dce=no
   1  farsync2 1500  sync-ppp     V35
      clock-rate=64000 clock-source=external hdlc-keepalive=10s
      frame-relay-lmi-type=ansi frame-relay-dce=no
```
You can monitor the status of the synchronous interface:

```
[admin@MikroTik] interface farsync> monitor 0
  card-type: T2P FarSync T-Series
  state: running
  firmware-id: 2
  firmware-version: 0.7.0
  physical-media: V35
  cable: detected
  clock: not-detected
  input-signals: CTS
  output-signals: RTS DTR
```

Troubleshooting

Description

- **The farsync interface does not show up under the interface list**
 Obtain the required license for synchronous feature

- **The synchronous link does not work**
 Check the cabling and the line between the modems. Read the modem manual

Synchronous Link Applications

MikroTik router to MikroTik router

Let us consider the following network setup with two MikroTik routers connected to a leased line with baseband modems:

The interface should be enabled according to the instructions given above. The **IP addresses** assigned to the synchronous interface should be as follows:

```
[admin@MikroTik] ip address> add address 1.1.1.1/32 interface farsync1
... network 1.1.1.2 broadcast 255.255.255.255
[admin@MikroTik] ip address> print
Flags: X - disabled, I - invalid, D - dynamic
  #  ADDRESS       NETWORK      BROADCAST   INTERFACE
0  10.0.0.254/24   10.0.0.254   10.0.0.255   ether2
1  192.168.0.254/24 192.168.0.254 192.168.0.255 ether1
2  1.1.1.1/32 255.255.255.255 farsync1
[admin@MikroTik] ip address> /ping 1.1.1.2
1.1.1.2 64 byte pong: ttl=255 time=31 ms
1.1.1.2 64 byte pong: ttl=255 time=26 ms
1.1.1.2 64 byte pong: ttl=255 time=26 ms
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 26/27.6/31 ms
[admin@MikroTik] ip address>
```

Note that for the point-to-point link the network mask is set to 32 bits, the argument **network** is set to the **IP address** of the other end, and the broadcast address is set to 255.255.255.255. The default route should be set to the gateway router 1.1.1.2:

```
[admin@MikroTik] ip route> add gateway 1.1.1.2
[admin@MikroTik] ip route> print
```

Copyright 1999-2005, MikroTik. All rights reserved. Mikrotik, RouterOS and RouterBOARD are trademarks of Mikrotikls SIA.
Other trademarks and registered trademarks mentioned herein are properties of their respective owners.
The configuration of the MikroTik router at the other end is similar:

```
[admin@MikroTik] ip address> add address 1.1.1.2/32 interface fsync \
| ... network 1.1.1.1 broadcast 255.255.255.255
[admin@MikroTik] ip address> print
Flags: X - disabled, I - invalid, D - dynamic
# ADDRESS NETWORK BROADCAST INTERFACE
0 10.1.1.12/24 10.1.1.12 10.1.1.255 ether1
1 1.1.1.2/32 1.1.1.2 1.1.1.2 fsync
```

```
[admin@MikroTik] ip address> /ping 1.1.1.1
1.1.1.1 64 byte pong: ttl=255 time=31 ms
1.1.1.1 64 byte pong: ttl=255 time=26 ms
1.1.1.1 64 byte pong: ttl=255 time=26 ms
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 26/27.6/31 ms
[admin@MikroTik] ip address>
```

MikroTik router to MikroTik router P2P using X.21 line

Consider the following example:

The default value of the property `clock-source` must be changed to `internal` for one of the cards. Both cards must have `media-type` property set to `X21`.

IP address configuration on both routers is as follows (by convention, the routers are named `hq` and `office` respectively):

```
[admin@hq] ip address> pri
Flags: X - disabled, I - invalid, D - dynamic
# ADDRESS NETWORK BROADCAST INTERFACE
0 192.168.0.1/24 192.168.0.0 192.168.0.255 ether1
1 1.1.1.1/32 1.1.1.2 1.1.1.2 fsync
```

```
[admin@hq] ip address>
```

```
[admin@office] ip address>
Flags: X - disabled, I - invalid, D - dynamic
# ADDRESS NETWORK BROADCAST INTERFACE
0 10.0.0.112/24 10.0.0.0 10.0.0.255 ether1
1 1.1.1.2/32 1.1.1.2 1.1.1.2 fsync
```

```
[admin@office] ip address>
```

MikroTik router to Cisco router using X.21 line

Assume we have the following configuration:

The configuration of MT router is as follows:

```
[admin@MikroTik] interface farsync> set farsync1 line-protocol=cisco-hdlc \ \
| ... media-type=X21 clock-source=internal
[admin@MikroTik] interface farsync> enable farsync1
[admin@MikroTik] interface farsync> print
Flags: X - disabled, R - running
0 R name="farsync1" mtu=1500 line-protocol=cisco-hdlc media-type=X21 \ 
| clock-rate=64000 clock-source=internal chdlc-keepalive=10s
```

```
frame-relay-lmi-type=ansi frame-relay-dce=no

1 X name="farsync2" mtu=1500 line-protocol=sync-ppp media-type=V35
clock-rate=64000 clock-source=external chdlc-keepalive=10s
frame-relay-lmi-type=ansi frame-relay-dce=no

[admin@MikroTik] interface farsync>
[admin@MikroTik] interface farsync> /ip address add address=1.1.1.1/24 \
\... interface=farsync1

The essential part of the configuration of Cisco router is provided below:

interface Serial0
ip address 1.1.1.2 255.255.255.0
no ip route-cache
no ip mroutecache
no fair-queue
!
ip classless
ip route 0.0.0.0 0.0.0.0 1.1.1.1

MikroTik router to MikroTik router using Frame Relay

Consider the following example:

The default value of the property clock-source must be changed to internal for one of the cards. This card also requires the property frame-relay-dce set to yes. Both cards must have media-type property set to X21 and the line-protocol set to frame-relay.

Now we need to add pvc interfaces:

[admin@hq] interface pvc> add dlci=42 interface=farsync1
[admin@hq] interface pvc> print
Flags: X - disabled, R - running
   #   NAME   MTU   DLCI   INTERFACE
      0 X    pvc1    1500   42    farsync1
[admin@hq] interface pvc>

Similar routine has to be done also on office router:

[admin@office] interface pvc> add dlci=42 interface=farsync1
[admin@office] interface pvc> print
Flags: X - disabled, R - running
   #   NAME   MTU   DLCI   INTERFACE
      0 X    pvc1    1500   42    farsync1
[admin@office] interface pvc>

Finally we need to add IP addresses to pvc interfaces and enable them.

On the qv router:

[admin@hq] interface pvc> /ip addr add address 2.2.2.1/24 interface pvc1
[admin@hq] interface pvc> /ip addr print
Flags: X - disabled, I - invalid, D - dynamic
   #   ADDRESS   NETWORK   BROADCAST   INTERFACE
      0 10.0.0.12/24  10.0.0.0   10.0.0.255   ether1
      1 192.168.0.1/24  192.168.0.0  192.168.0.255   ether2
      2 2.2.2.1/24   2.2.2.0   2.2.2.255    pvc1
[admin@hq] interface pvc> enable 0
[admin@hq] interface pvc>

and on the office router:
Now we can monitor the synchronous link status:

```bash
[admin@hq] interface pvc> /ping 2.2.2.2
2.2.2.2 64 byte ping: ttl=64 time=20 ms
2.2.2.2 64 byte ping: ttl=64 time=20 ms
2.2.2.2 64 byte ping: ttl=64 time=21 ms
2.2.2.2 64 byte ping: ttl=64 time=21 ms
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max = 20/20.5/21 ms
```

```bash
[admin@hq] interface pvc> /interface farsync monitor 0
 card-type: T2P FarSync T-Series
 state: running-normally
 firmware-id: 2
 firmware-version: 1.0.1
 physical: X.21
 cable: detected
 clock: detected
 input-signals: CTS
 output-signals: RTS,DTR
```

[admin@hq] interface pvc>
Frame Relay (PVC, Private Virtual Circuit) Interface

Document revision 1.1 (Fri Mar 05 08:14:41 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
General Information
  Summary
  Specifications
  Description
  Additional Documents
Configuring Frame Relay Interface
  Description
  Property Description
  Notes
Frame Relay Configuration
  Example with Cyclades Interface
  Example with MOXA Interface
  Example with MikroTik Router to MikroTik Router
Troubleshooting
  Description

General Information

Summary

Frame Relay is a multiplexed interface to packet switched network and is a simplified form of Packet Switching similar in principle to X.25 in which synchronous frames of data are routed to different destinations depending on header information. Frame Relay uses the synchronous HDLC frame format.

Specifications

Packages required: synchronous
License required: level4
Home menu level: /interface pvc
Standards and Technologies: Frame Relay (RFC1490)
Hardware usage: Not significant

Description

To use Frame Relay interface you must have already working synchronous interface. You can read how to set up synchronous boards supported by MikroTik RouterOS:

- Cyclades PC300 PCI Adapters
- Moxa C101 Synchronous interface
• **Moxa C502 Dual Port Synchronous interface**

**Additional Documents**

• **Frame Relay Forum**

**Configuring Frame Relay Interface**

Home menu level: `/interface pvc`

**Description**

To configure frame relay, at first you should set up the synchronous interface, and then the PVC interface.

**Property Description**

- **name (name; default: pvcN)** - assigned name of the interface
- **mtu (integer; default: 1500)** - Maximum Transmission Unit of an interface
- **dlci (integer; default: 16)** - Data Link Connection Identifier assigned to the PVC interface
- **interface (name)** - Frame Relay interface

**Notes**

A DLCI is a channel number (Data Link Connection Identifier) which is attached to data frames to tell the network how to route the data. Frame Relay is "statistically multiplexed", which means that only one frame can be transmitted at a time but many logical connections can co-exist on a single physical line. The DLCI allows the data to be logically tied to one of the connections so that once it gets to the network, it knows where to send it.

**Frame Relay Configuration**

**Example with Cyclades Interface**

Let us consider the following network setup with MikroTik router with Cyclades PC300 interface connected to a leased line with baseband modems and a Cisco router at the other end.

```
[admin@MikroTik] ip address> add interface=pvc1 address=1.1.1.1 netmask=255.255.255.0
[admin@MikroTik] ip address> print
Flags: X - disabled, I - invalid, D - dynamic
 # ADDRESS NETWORK BROADCAST INTERFACE
 0 1.1.1.1/24 1.1.1.0 1.1.1.255 pvc1
[admin@MikroTik] ip address>
```

PVC and Cyclades interface configuration

- **Cyclades**

```
[admin@MikroTik] interface cyclades> print
```
Flags: X - disabled, R - running
0  R name="cyclades1" mtu=1500 line-protocol=frame-relay media-type=V35
clock-rate=64000 clock-source=external line-code=B8ZS framing-mode=ESF
line-build-out=0dB rx-sensitivity=short-haul frame-relay-lmi-type=ansi
frame-relay-dce=no chdlc-keepalive=10s

[admin@MikroTik] interface cyclades>

• PVC

[admin@MikroTik] interface pvc> print
Flags: X - disabled, R - running
#   NAME   MTU   DLCI   INTERFACE
0  R   pvc1 1500    42   cyclades1

[admin@MikroTik] interface pvc>

• Cisco router setup

CISCO# show running-config
Building configuration...
Current configuration...
...
!
ip subnet-zero
no ip domain-lookup
frame-relay switching
!
interface Ethernet0
description connected to EthernetLAN
ip address 10.0.0.254 255.255.255.0
!
interface Serial0
description connected to Internet
no ip address
encapsulation frame-relay IETF
serial restart-delay 1
frame-relay lmi-type ansi
frame-relay intf-type dce
!
interface Serial0.1 point-to-point
ip address 1.1.1.2 255.255.255.0
no arp frame-relay
frame-relay interface-dlci 42
!
... end.

Send ping to MikroTik router

CISCO#ping 1.1.1.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 1.1.1.1, timeout is 2 seconds:
!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 28/31/32 ms
CISCO#

Example with MOXA Interface

Let us consider the following network setup with MikroTik router with MOXA C502 synchronous interface connected to a leased line with baseband modems and a Cisco router at the other end.

[admin@MikroTik] ip address> add interface=pvc1 address=1.1.1.1 netmask=255.255.255.0
[admin@MikroTik] ip address> print
Flags: X - disabled, I - invalid, D - dynamic
#   ADDRESS   NETWORK   BROADCAST   INTERFACE

PVC and Moxa interface configuration

- **Moxa**

  [admin@MikroTik] interface moxa-c502> print
  Flags: R - disabled, X - running
  0 R name="moxa1" mtu=1500 line-protocol=frame-relay clock-rate=64000
  clock-source=external frame-relay-lmi-type=ansi frame-relay-dce=no
  cisco-hdlc-keepalive-interval=10s
  1 X name="moxa-c502-2" mtu=1500 line-protocol=sync-ppp clock-rate=64000
  clock-source=external frame-relay-lmi-type=ansi frame-relay-dce=no
  cisco-hdlc-keepalive-interval=10s

  [admin@MikroTik] interface moxa-c502>

- **PVC**

  [admin@MikroTik] interface pvc> print
  Flags: X - disabled, R - running
  # NAME MTU DLCI INTERFACE
  0 R pvc1 1500 42 moxa1

  [admin@MikroTik] interface pvc>

CISCO router setup

CISCO# show running-config

Building configuration...

Current configuration...

...%!
  ip subnet-zero
  no ip domain-lookup
  frame-relay switching
  interface Ethernet0
  description connected to EthernetLAN
  ip address 10.0.0.254 255.255.255.0
  !
  interface Serial0
  description connected to Internet
  no ip address
  encapsulation frame-relay IETF
  serial restart-delay 1
  frame-relay lmi-type ansi
  frame-relay intf-type dce
  !
  interface Serial0.1 point-to-point
  ip address 1.1.1.2 255.255.255.0
  no arp frame-relay
  frame-relay interface-dlci 42
  !
  ...
  end.

Send ping to MikroTik router

CISCO#ping 1.1.1.1

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 1.1.1.1, timeout is 2 seconds:
!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 28/31/32 ms
CISCO#
Example with MikroTik Router to MikroTik Router

Let us consider the following example:

In this example we will use two Moxa C101 synchronous cards.

Do not forget to set **line-protocol** for synchronous interfaces to **frame-relay**. To achieve proper result, one of the synchronous interfaces must operate in DCE mode:

```
[admin@r1] interface moxa-c101> set 0 frame-relay-dce=yes
[admin@r1] interface moxa-c101> print
Flags: X - disabled, R - running
 0 R name="moxa-c101-1" mtu=1500 line-protocol=frame-relay clock-rate=64000
 clock-source=external frame-relay-lmi-type=ansi frame-relay-dce=yes
 cisco-hdlc-keepalive-interval=10s ignore-dcd=no
[admin@r1] interface moxa-c101>
```

Then we need to add PVC interfaces and **IP addresses**.

On the R1:

```
[admin@r1] interface pvc> add dlci=42 interface=moxa-c101-1
[admin@r1] interface pvc> print
Flags: X - disabled, R - running
$ NAME MTU DLCI INTERFACE
 0 X pvc1 1500 42 moxa-c101-1
[admin@r1] interface pvc> /ip address add address 4.4.4.1/24 interface pvc1
```

on the R2:

```
[admin@r2] interface pvc> add dlci=42 interface=moxa-c101-1
[admin@r2] interface pvc> print
Flags: X - disabled, R - running
$ NAME MTU DLCI INTERFACE
 0 X pvc1 1500 42 moxa-c101-1
[admin@r2] interface pvc> /ip address add address 4.4.4.2/24 interface pvc1
```

Finally, we must enable PVC interfaces:

```
[admin@r1] interface pvc> enable pvc1
[admin@r1] interface pvc>
[admin@r2] interface pvc> enable pvc1
[admin@r2] interface pvc>
```

Troubleshooting

Description

- I cannot ping through the synchronous frame relay interface between MikroTik router and a Cisco router
  Frame Relay does not support address resolving and IETF encapsulation should be used. Please check the configuration on the Cisco router
General Interface Settings

Document revision 1.1 (Fri Mar 05 08:08:52 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
  Summary
  Related Documents
  Description
  Interface Status
    Property Description
    Example
  Traffic Monitoring
    Description
    Notes
    Example

General Information

Summary

MikroTik RouterOS supports a variety of Network Interface Cards as well as some virtual interfaces (like VLAN, Bridge, etc.). Each of them has its own submenu, but there is also a list of all interfaces where some common properties can be configured.

Related Documents

- Wireless Client and Wireless Access Point Manual
- Bridge Interfaces
- ARLAN 655 Wireless Client Card
- CISCO/Aironet 2.4GHz 11Mbps Wireless Interface
- Cyclades PC300 PCI Adapters
- Ethernet Interfaces
- EoIP Tunnel Interface
- FarSync X.21 Interface
- FrameRelay (PVC, Private Virtual Circuit) Interface
- IPIP Tunnel Interfaces
- ISDN (Integrated Services Digital Network) Interface
- L2TP Interface
- MOXA C101 Synchronous Interface
• MOXA C502 Dual-port Synchronous Interface
• PPP and Asynchronous Interfaces
• PPPoE Interface
• PPTP Interface
• RadioLAN 5.8GHz Wireless Interface
• VLAN Interface
• Xpeed SDSL Interface

Description

The Manual describes general settings of MikroTik RouterOS interfaces.

Interface Status

Home menu level: /interface

Property Description

name (text) - the name of the interface
status - shows the interface status
type (read-only: arlan | bridge | cyclades | eoip | ethernet | farsync | ipip | isdn-client | isdn-server | l2tp-client | l2tp-server | moxa-c101 | moxa-c502 | mtsync | pc | ppp-client | ppp-server | pppoe-client | pppoe-server | pptp-client | pptp-server | pvc | radiolan | sbe | vlan | wavelan | wireless | xpeed) - interface type
mtu (integer) - maximum transmission unit for the interface (in bytes)
rx-rate (integer; default: 0) - maximum data rate for receiving data
  • 0 - no limits
tx-rate (integer; default: 0) - maximum data rate for transmitting data
  • 0 - no limits

Example

To see the list of all available interfaces:

```
[admin@MikroTik] interface> print
Flags: X - disabled, D - dynamic, R - running
NAME TYPE RX-RATE TX-RATE MTU
 0 R ethernet1 ether 0 0 1500
 1 R bridge1 bridge 0 0 1500
 2 R ethernet2 ether 0 0 1500
 3 R wlan1 wlan 0 0 1500
[admin@MikroTik] interface>
```

Traffic Monitoring

Command name: /interface monitor-traffic
Description

The traffic passing through any interface can be monitored.

Notes

One or more interfaces can be monitored at the same time.

Example

Multiple interface monitoring:

[admin@MikroTik] interface> monitor-traffic ether1,wlan1
received-packets-per-second: 1 0
received-bits-per-second: 475bps 0bps
sent-packets-per-second: 1 1
sent-bits-per-second: 2.43kbps 198bps
-- [Q quit|D dump|C-z pause]
How to make a GPRS connection

Description

Let us consider a situation that you are in a place where no internet connection is available, but you have access to your mobile network provider. In this case you can connect MikroTik router to your mobile phone provider using GPRS (General Packet Radio Service) and so establish an internet connection.

In this example we are using a **PCMCIA GPRS card**.

Example

- Plug the GPRS PCMCIA card (with your SIM card) into the router, turn on the router and after it has started, see if a new port has appeared. In this case it is the **serial1** port which is our GPRS device:

  [admin@MikroTik] port> print
  # NAME USED-BY BAUD-RATE
  0 serial10 Serial Console 115200
  1 serial1

- Enter the pin code from serial-terminal (in this case, PIN code is 3663):

  /system serial-terminal serial1

  AT+CPIN="3663"

  Now you should see **OK** on your screen. Wait for about 5 seconds and see if the green led started to blink. Press Ctrl+Q to quit the serial-terminal.

- Change remote-address in **/ppp profile**, in this case to 212.93.96.65 (you should obtain it from your mobile network operator):

  /ppp profile set default remote-address=212.93.96.65

- Add a ppp client:

  /interface ppp-client add dial-command=ATD phone=*99***1#

  ... modem-init="AT+CGDCONT=1,"IP","internet" port=serial1

- Now enable the interface and see if it is connected:
[admin@MikroTik] interface ppp-client> enable 0
[admin@MikroTik] interface ppp-client> mo 0
  status: dialing...
  status: link established
  status: authenticated
  uptime: 0s
  idle-time: 0s
  status: authenticated
  uptime: 1s
  idle-time: 1s
  status: connected
  uptime: 2s
  idle-time: 2s
[admin@MikroTik] interface ppp-client>

Check the IP addresses:

[admin@MikroTik] ip address> print
  Flags: X - disabled, I - invalid, D - dynamic
  #  ADDRESS    NETWORK     BROADCAST     INTERFACE
     0 192.168.0.5/24 192.168.0.0 192.168.0.255 ether1
     1 D 10.40.205.168/32 212.93.96.65 0.0.0.0 ppp-out1
[admin@MikroTik] ip address>
**ISDN (Integrated Services Digital Network) Interface**

Document revision 1.1 (Fri Mar 05 08:15:11 GMT 2004)

This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
General Information
   Summary
   Specifications
   Related Documents
   Additional Documents
ISDN Hardware and Software Installation
   Description
   Property Description
   ISDN Channels
   MSN and EAZ numbers
ISDN Client Interface Configuration
   Description
   Property Description
   Example
ISDN Server Interface Configuration
   Description
   Property Description
   Example
ISDN Examples
   ISDN Dial-out
   ISDN Dial-in
   ISDN Backup

General Information

**Summary**

The MikroTik router can act as an ISDN client for dialing out, or as an ISDN server for accepting incoming calls. The dial-out connections may be set as dial-on-demand or as permanent connections (simulating a leased line). The remote IP address (provided by the ISP) can be used as the default gateway for the router.

**Specifications**

Packages required: isdn , ppp
License required: level1
Home menu level: /interface isdn-server , /interface isdn-client
Standards and Technologies: **PPP (RFC 1661)**
Hardware usage: *Not significant*

**Related Documents**

- Package Management
- Device Driver List
- Log Management

**Additional Documents**

- PPP over ISDN
- RFC3057 - ISDN Q.921-User Adaptation Layer

**ISDN Hardware and Software Installation**

Command name: `/driver add`

**Description**

Please install the ISDN adapter into the PC accordingly the instructions provided by the adapter manufacturer.

Appropriate packages have to be downloaded from MikroTik's web page [http://www.mikrotik.com](http://www.mikrotik.com). After all, the ISDN driver should be loaded using the `/driver add` command.

MikroTik RouterOS supports passive PCI adapters with Siemens chipset:

- Eicon. Diehl Diva - *diva*
- Sedlbauer Speed - *sedlbauer*
- ELSA Quickstep 1000 - *quickstep*
- NETjet - *netjet*
- Teles - *teles*
- Dr. Neuhaus Niccy - *niccy*
- AVM - *avm*
- Gazel - *gazel*
- HFC 2BDS0 based adapters - *hfc*
- W6692 based adapters - *w6692*

For example, for the HFC based PCI card, it is enough to use `/driver add name=hfc` command to get the driver loaded.

**Note!** ISDN ISA adapters are not supported!

**Property Description**

---

Copyright 1999-2005, MikroTik. All rights reserved. Mikrotik, RouterOS and RouterBOARD are trademarks of Mikrotikis SIA. Other trademarks and registered trademarks mentioned herein are properties of their respective owners.
**name** ( *name* ) - name of the driver

**isdn-protocol** ( *euro* | *german* ; default: *euro* ) - data channel protocol

---

### ISDN Channels

ISDN channels are added to the system automatically when the ISDN card driver is loaded. Each channel corresponds to one physical 64K ISDN data channel.

The list of available ISDN channels can be viewed using the **/isdn-channels print** command. The channels are named **channel1**, **channel2**, and so on. E.g., if you have two ISDN channels, and one of them currently used by an ISDN interface, but the other available, the output should look like this:

```
[admin@MikroTik] isdn-channels> print
Flags: X - disabled, E - exclusive
NAME CHANNEL DIR.. TYPE PHONE
0 channel1 0
1 channel2 1
[admin@MikroTik] isdn-channels>
```

ISDN channels are very similar to PPP serial ports. Any number of ISDN interfaces can be configured on a single channel, but only one interface can be enabled for that channel at a time. It means that every ISDN channel is either available or used by an ISDN interface.

---

### MSN and EAZ numbers

In Euro-ISDN a subscriber can assign more than one ISDN number to an ISDN line. For example, an ISDN line could have the numbers 1234067 and 1234068. Each of these numbers can be used to dial the ISDN line. These numbers are referred to as Multiple Subscriber Numbers (MSN).

A similar, but separate concept is EAZ numbering, which is used in German ISDN networking. EAZ number can be used in addition to dialed phone number to specify the required service.

For dial-out ISDN interfaces, MSN/EAZ number specifies the outgoing phone number (the calling end). For dial-in ISDN interfaces, MSN/EAZ number specifies the phone number that will be answered. If you are unsure about your MSN/EAZ numbers, leave them blank (it is the default).

For example, if your ISDN line has numbers 1234067 and 1234068, you could configure your dial-in server to answer only calls to 1234068 by specifying **1234068** as your MSN number. In a sense, MSN is just your phone number.

---

### ISDN Client Interface Configuration

**Home menu level:** **/interface isdn-client**

**Description**

The ISDN client is used to connect to remote dial-in server (probably ISP) via ISDN. To set up an ISDN dial-out connection, use the ISDN dial-out configuration menu under the submenu.

**Property Description**

**name** ( *name* ; default: *isdn-outN* ) - interface name
mtu (integer; default: 1500) - Maximum Transmission Unit
mru (integer; default: 1500) - Maximum Receive Unit
phone (integer; default: "") - phone number to dial
msn (integer; default: "") - MSN/EAZ of ISDN line provided by the line operator
dial-on-demand (yes|no; default: no) - use dialing on demand
l2-protocol (hdlc | x75i | x75ui | x75bui; default: hdlc) - level 2 protocol to be used
user (text) - user name that will be provided to the remote server
password (text) - password that will be provided to the remote server
allow (multiple choice: mschap2, mschap1, chap, pap; default: mschap2, mschap1, chap, pap) - the protocol to allow the client to use for authentication
add-default-route (yes|no; default: no) - add default route to remote host on connect
profile (name; default: default) - profile to use when connecting to the remote server
use-peer-dns (yes|no; default: no) - use or not peer DNS
bundle-128K (yes|no; default: yes) - use both channels instead of just one

Example

ISDN client interfaces can be added using the `add` command:

```
[admin@MikroTik] interface isdn-client> add msn="142" user="test" \
\... password="test" phone="144" bundle-128K=no
[admin@MikroTik] interface isdn-client> print
Flags: X - disabled, R - running
 0 X name="isdn-out1" mtu=1500 mru=1500 msn="142" user="test"
 password="test" profile=default phone="144" l2-protocol=hdlc
 bundle-128K=no dial-on-demand=no add-default-route=no use-peer-dns=no
[admin@MikroTik] interface isdn-client>
```

ISDN Server Interface Configuration

Home menu level: `/interface isdn-client`

**Description**

ISDN server is used to accept remote dial-in connections form ISDN clients.

**Property Description**

name (name; default: isdn-inN) - interface name

mtu (integer; default: 1500) - Maximum Transmission Unit

mru (integer; default: 1500) - Maximum Receive Unit

phone (integer; default: "") - phone number to dial

msn (integer; default: "") - MSN/EAZ of ISDN line provided by the line operator

l2-protocol (hdlc | x75i | x75ui | x75bui; default: hdlc) - level 2 protocol to be used

profile (name; default: default) - profile to use when connecting to the remote server
**bundle-128K** (yes | no ; default: yes) - use both channels instead of just one

**authentication** (pap | chap | mschap1 | mschap2 ; default: mschap2, mschap1, chap, pap) - used authentication

### Example

ISDN server interfaces can be added using the **add** command:

```
[admin@MikroTik] interface isdn-server> add msn="142" bundle-128K=no
[admin@MikroTik] interface isdn-server> print
 Flags: X - disabled, R - running
 0 X name="isdn-in1" mtu=1500 mru=1500 msn="142"
 authentication=mschap2,chap,pap profile=default 12-protocol=x75bui
 bundle-128K=no

[admin@MikroTik] interface isdn-server>
```

### ISDN Examples

#### ISDN Dial-out

Dial-out ISDN connections allow a local router to connect to a remote dial-in server (ISP's) via ISDN.

Let's assume you would like to set up a router that connects your local LAN with your ISP via ISDN line. First you should load the corresponding ISDN card driver. Supposing you have an ISDN card with a **W6692**-based chip:

```
[admin@mikrotik] > /driver add name=w6692
```

Now additional channels should appear. Assuming you have only one ISDN card driver loaded, you should get following:

```
[admin@mikroTik] isdn-channels> print
 Flags: X - disabled, E - exclusive
 # NAME CHANNEL DIR. TYPE PHONE
 0 channel1 0
 1 channel2 1

[admin@mikroTik] isdn-channels>
```

Suppose you would like to use dial-on-demand to dial your ISP and automatically add a default route to it. Also, you would like to disconnect when there is more than 30s of network inactivity. Your ISP's phone number is 12345678 and the user name for authentication is 'john'. Your ISP assigns IP addresses automatically. Add an outgoing ISDN interface and configure it in the following way:

```
[admin@mikrotik] > /interface isdn-client add name="isdn-isp" phone="12345678"
user="john" password="31337!"
 add-default-route=yes dial-on-demand=yes
[admin@mikroTik] > /interface isdn-client print
 Flags: X - disabled, R - running
 0 X name="isdn-isp" mtu=1500 mru=1500 msn="" user="john" password="31337!"
 profile=default phone="12345678" 12-protocol=hdlc bundle-128K=no
 dial-on-demand=yes add-default-route=yes use-peer-dns=no

[admin@mikroTik] isdn-channels>
```

Configure PPP profile.

```
[admin@mikroTik] ppp profile> print
 Flags: * - default
 0 * name="default" local-address=0.0.0.0 remote-address=0.0.0.0
```
If you would like to remain connected all the time, i.e., as a leased line, then set the `idle-timeout` to 0s.

All that remains is to enable the interface:

```
[admin@MikroTik] /interface set isdn-isp disabled=no
```

You can monitor the connection status with the following command:

```
[admin@MikroTik] /interface isdn-client monitor isdn-isp
```

**ISDN Dial-in**

Dial-in ISDN connections allow remote clients to connect to your router via ISDN.

Let us assume you would like to configure a router for accepting incoming ISDN calls from remote clients. You have an Ethernet card connected to the LAN, and an ISDN card connected to the ISDN line. First you should load the corresponding ISDN card driver. Supposing you have an ISDN card with an HFC chip:

```
[admin@MikroTik] /driver add name=hfc
```

Now additional channels should appear. Assuming you have only one ISDN card driver loaded, you should get the following:

```
[admin@MikroTik] isdn-channels> print
Flags: X - disabled, E - exclusive
 # NAME CHANNEL DIR.. TYPE PHONE
 0 channel1 0
 1 channel2 1
[admin@MikroTik] isdn-channels>
```

Add an incoming ISDN interface and configure it in the following way:

```
[admin@MikroTik] interface isdn-server> add msn="7542159" authentication=chap,pap bundle-128K=no
[admin@MikroTik] interface isdn-server> print
Flags: X - disabled
 0 X name="isdn-in1" mtu=1500 mru=1500 msn="7542159" authentication=chap,pap profile=default 12-protocol=hldc bundle-128K=no
```

Configure PPP settings and add users to router's database.

```
[admin@MikroTik] ppp profile> print
Flags: * - default
 0 * name="default" local-address=0.0.0.0 remote-address=0.0.0.0
 session-timeout=0s idle-timeout=0s use-compression=no
 use-vj-compression=yes use-encryption=no require-encryption=no only-one=no
 tx-bit-rate=0 rx-bit-rate=0 incoming-filter="" outgoing-filter=""
[admin@MikroTik] ppp profile> set default idle-timeout=5s local-address=10.99.8.1
```

Add user 'john' to the router's user database. Assuming that the password is '31337!)':

```
[admin@MikroTik] ppp secret> add name=john password="31337!)" service=isdn
[admin@MikroTik] ppp secret> print
[admin@ISDN] ppp secret> print
Flags: X - disabled
```
Check the status of the ISDN server interface and wait for the call:

```
[admin@MikroTik] interface isdn-server> monitor isdn-in1
 status: Waiting for call...
```

### ISDN Backup

Backup systems are used in specific cases, when you need to maintain a connection, even if a fault occurs. For example, if someone cuts the wires, the router can automatically connect to a different interface to continue its work. Such a backup is based on an utility that monitors the status of the connection - netwatch, and a script, which runs the netwatch.

This is an example of how to make simple router backup system. In this example we'll use an ISDN connection for purpose to backup a standard Ethernet connection. You can, however, use instead of the ISDN connection anything you need - PPP, for example. When the Ethernet fail (the router nr.1 cannot ping the router nr.2 to 2.2.2.2 (see picture) the router nr.1 will establish an ISDN connection, so-called backup link, to continue communicating with the nr. 2.

You must keep in mind, that in our case there are just two routers, but this system can be extended to support more different networks.

The backup system example is shown in the following picture:

In this case the **backup** interface is an ISDN connection, but in real applications it can be substituted by a particular connection. Follow the instructions below on how to set up the backup link:

- At first, you need to set up ISDN connection. To use ISDN, the ISDN card driver must be loaded:

  ```
 [admin@MikroTik] driver> add name=hfc
  ```

  The PPP connection must have a new user added to the routers one and two:

  ```
 [admin@Mikrotik] ppp secret> add name=backup password=backup service=isdn
  ```

  An ISDN server and PPP profile must be set up on the second router:

  ```
 [admin@Mikrotik] ppp profile> set default local-address=3.3.3.254 remote-address=3.3.3.1
 [admin@MikroTik] interface isdn-server> add name=backup msn=7801032
  ```

  An ISDN client must be added to the first router:

  ```
 [admin@MikroTik] interface isdn-client>
 add name=backup user="backup" password="backup" phone=7801032 msn=7542159
  ```

- Then, you have to set up static routes

  Use the `/ip route add` command to add the required static routes and comments to them. Comments are required for references in scripts.

  The **first** router:

  ```
 [admin@Mikrotik] ip route> add gateway 2.2.2.2 comment "route1"
  ```

  The **second** router:

  ```
 [admin@Mikrotik] ip route> add gateway 2.2.2.1 comment "route1" dst-address 1.1.1.0/24
  ```
• And finally, you have to add scripts.
  Add scripts in the submenu /system script using the following commands:

  The first router:

  [admin@Mikrotik] system script> add name=connection_down \\
  \... source={/interface enable backup; /ip route set route1 gateway 3.3.3.254}
  [admin@Mikrotik] system script> add name=connection_up \\
  \... source={/interface disable backup; /ip route set route1 gateway 2.2.2.2}

  The second router:

  [admin@Mikrotik] system script> add name=connection_down \\
  \... source={/ip route set route1 gateway 3.3.3.1}
  [admin@Mikrotik] system script> add name=connection_up \\
  \... source={/ip route set route1 gateway 2.2.2.1}

• To get all above listed to work, set up Netwatch utility. To use netwatch, you need the advanced tools feature package installed. Please upload it to the router and reboot. When installed, the advanced-tools package should be listed under the /system package print list.

  Add the following settings to the first router:

  [admin@Mikrotik] tool netwatch> add host=2.2.2.1 interval=5s \\
  \... up-script=connection_up down-script=connection_down

  Add the following settings to the second router:

  [admin@Mikrotik] tool netwatch> add host=2.2.2.2 interval=5s \\
  \... up-script=connection_up down-script=connection_down
M3P

Document revision 0.3.0 (Wed Mar 03 16:07:55 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
  Summary
  Specifications
  Related Documents
  Description
  Setup
    Description
    Property Description
  Notes
  Example

General Information

Summary

The MikroTik Packet Packer Protocol (M3P) optimizes the data rate usage of links using protocols that have a high overhead per packet transmitted. The basic purpose of this protocol is to better enable wireless networks to transport VoIP traffic and other traffic that uses small packet sizes of around 100 bytes.

M3P features:

• enabled by a per interface setting
• other routers with MikroTik Discovery Protocol enabled will broadcast M3P settings
• significantly increases bandwidth availability over some wireless links – by approximately four times
• offer configuration settings to customize this feature

Specifications

Packages required: system
License required: level1
Home menu level: /ip packing
Standards and Technologies: M3P
Hardware usage: Not significant

Related Documents

• Package Management
• MNDP
Description

The wireless protocol IEEE 802.11 and, to a lesser extent, Ethernet protocol have a high overhead per packet as for each packet it is necessary to access the media, check for errors, resend in case of errors occurred, and send network maintenance messages (network maintenance is applicable only for wireless). The MikroTik Packet Packer Protocol improves network performance by aggregating many small packets into a big packet, thereby minimizing the network per packet overhead cost. The M3P is very effective when the average packet size is 50-300 bytes - the common size of VoIP packets.

Features:

- may work on any Ethernet-like media
- is disabled by default for all interfaces
- when older version on the RouterOS are upgraded from a version without M3P to a version with discovery, current wireless interfaces will not be automatically enabled for M3P
- small packets going to the same MAC level destination (regardless of IP destination) are collected according to the set configuration and aggregated into a large packet according to the set size
- the packet is sent as soon as the maximum aggregated-packet packet size is reached or a maximum time of 15ms (+/-5ms)

Setup

Home menu level: /ip packing

Description

M3P is working only between MikroTik routers, which are discovered with MikroTik Neighbor Discovery Protocol (MNDP). When M3P is enabled router needs to know which of its neighbouring hosts have enabled M3P. MNDP is used to negotiate unpacking settings of neighbours, therefore it has to be enabled on interfaces you wish to enable M3P. Consult MNDP manual on how to do it.

Property Description

aggregated-size (integer; default: 1500) - the maximum aggregated packet’s size
interface (name) - interface to enable M3P on
packing (none|simple|compress-all|compress-headers; default: simple) - specifies the packing mode
  • none - no packing is applied to packets
  • simple - aggregate many small packets into one large packet, minimizing network overhead per packet
  • compress-headers - further increase network performance by compressing IP packet header (consumes more CPU resources)
  • compress-all - increase network performance even more by using header and data compression (extensive CPU usage)
unpacking (none | simple | compress-all | compress-headers; default: simple) - specifies the unpacking mode

- none - accept only usual packets
- simple - accept usual packets and aggregated packets without compression
- compress-headers - accept all packets except those with payload compression
- compress-all - accept all packets

Notes

Level of packet compression increases like this: none -> simple -> compress-headers -> compress-all.

When router has to send a packet it chooses minimum level of packet compression from what its own packing type is set and what other router's unpacking type is set. Same is with aggregated-size setting - minimum value of both ends is actual maximum size of aggregated packet used.

aggregated-size can be bigger than interface MTU if network device allows it to be (i.e., it supports sending and receiving frames bigger than 1514 bytes)

Example

To enable maximal compression on the ether1 interface:

[admin@MikroTik] ip packing> add interface=ether1 packing=compress-all \\...
 uninsured=compress-all
[admin@MikroTik] ip packing> print
Flags: X - disabled
# INTERFACE PACKING UNPACKING AGGREGATED-SIZE
0 ether1 compress-all compress-all 1500

[admin@MikroTik] ip packing>
MOXA C101 Synchronous Interface

Summary

The MikroTik RouterOS supports MOXA C101 Synchronous 4Mb/s Adapter hardware. The V.35 synchronous interface is the standard for VSAT and other satellite modems. However, you must check with the satellite system supplier for the modem interface type.

Specifications

Packages required: synchronous
License required: level4
Home menu level: /interface moxa-c101
Standards and Technologies: Cisco/HDLC-X.25 (RFC 1356), Frame Relay (RFC1490), PPP (RFC-1661), PPP (RFC-1662)
Hardware usage: Not significant

Related Documents

- Package Management
- Device Driver List
- IP Addresses and ARP
Description

You can install up to four MOXA C101 synchronous cards in one PC box, if you have so many slots and IRQs available. Assuming you have all necessary packages and licenses installed, in most cases it should to be done nothing at that point (all drivers are loaded automatically). However, if you have a non Plug-and-Play ISA card, the corresponding driver requires to be loaded.

MOXA C101 PCI variant cabling

The MOXA C101 PCI requires different from MOXA C101 ISA cable. It can be made using the following table:

<table>
<thead>
<tr>
<th>DB25f</th>
<th>Signal</th>
<th>Direction</th>
<th>V.35m</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>RTS</td>
<td>OUT</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>CTS</td>
<td>IN</td>
<td>D</td>
</tr>
<tr>
<td>6</td>
<td>DSR</td>
<td>IN</td>
<td>E</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>8</td>
<td>DCD</td>
<td>IN</td>
<td>F</td>
</tr>
<tr>
<td>10</td>
<td>TxDB</td>
<td>OUT</td>
<td>S</td>
</tr>
<tr>
<td>11</td>
<td>TxDA</td>
<td>OUT</td>
<td>P</td>
</tr>
<tr>
<td>12</td>
<td>RxDB</td>
<td>IN</td>
<td>T</td>
</tr>
<tr>
<td>13</td>
<td>RxDA</td>
<td>IN</td>
<td>R</td>
</tr>
<tr>
<td>14</td>
<td>TxCB</td>
<td>IN</td>
<td>AA</td>
</tr>
<tr>
<td>16</td>
<td>TxCA</td>
<td>IN</td>
<td>Y</td>
</tr>
<tr>
<td>20</td>
<td>DTR</td>
<td>OUT</td>
<td>H</td>
</tr>
<tr>
<td>22</td>
<td>RxCB</td>
<td>IN</td>
<td>X</td>
</tr>
<tr>
<td>23</td>
<td>RxCA</td>
<td>IN</td>
<td>V</td>
</tr>
</tbody>
</table>

short 9 and 25 pin

Additional Documents

For more information about the MOXA C101 synchronous 4Mb/s adapter hardware please see:

- C101 SuperSync Board User's Manual the user's manual in PDF format

Synchronous Interface Configuration

Home menu level: /interface moxa-c101

Description
Moxa c101 synchronous interface is shown under the interfaces list with the name moxa-c101-N

**Property Description**

- **name** (name; default: **moxa-c101-N**) - Interface name
- **cisco-hdlc-keepalive-interval** (time; default: **10s**) - Keepalive period in seconds
- **clock-rate** (integer; default: **64000**) - Speed of internal clock
- **clock-source** (external | internal | tx-from-rx | tx-internal; default: external) - Clock source
- **frame-relay-dce** (yes | no; default: no) - Operate or not in DCE mode
- **frame-relay-lmi-type** (ansi | ccitt; default: ansi) - Frame-relay Local Management Interface type:
  - ansi - Set LMI type to ANSI-617d (also known as Annex A)
  - ccitt - Set LMI type to CCITT Q933a (also known as Annex A)
- **ignore-dcd** (yes | no; default: no) - Ignore or not DCD
- **line-protocol** (cisco-hdlc | frame-relay | sync-ppp; default: sync-ppp) - Line protocol name
- **mtu** (integer; default: **1500**) - Maximum Transmit Unit

**Notes**

If you purchased the MOXA C101 Synchronous card from MikroTik, you have received a V.35 cable with it. This cable should work for all standard modems, which have V.35 connections. For synchronous modems, which have a DB-25 connection, you should use a standard DB-25 cable.

The MikroTik driver for the MOXA C101 Synchronous adapter allows you to unplug the V.35 cable from one modem and plug it into another modem with a different clock speed, and you do not need to restart the interface or router.

The default encapsulation method for CISCO is **HDLC**. If you have not changed this setting on CISCO, you should change **line-protocol** to **cisco-hdlc** for Moxa C101 interface.

**Example**

```
[admin@MikroTik] interface moxa-c101> set 0 line-protocol=cisco-hdlc
[admin@MikroTik] interface moxa-c101> print
Flags: X - disabled, R - running
 0 R name="moxa-c101" mtu=1500 line-protocol=cisco-hdlc clock-rate=64000
clock-source=external frame-relay-lmi-type=ansi frame-relay-dce=no
cisco-hdlc-keepalive-interval=10s ignore-dcd=no
[admin@MikroTik] interface moxa-c101>
```

You can monitor the status of the synchronous interface:

```
[admin@MikroTik] interface moxa-c101> monitor 0
dtr: yes
rts: yes
cts: no
dsr: no
dcd: no
[admin@MikroTik] interface moxa-c101>
```

Connect a communication device, e.g., a baseband modem, to the V.35 port and turn it on. If the link is working properly the status of the interface is:
Troubleshooting

Description

- **The synchronous interface does not show up under the interfaces list**
  Obtain the required license for synchronous feature

- **The synchronous link does not work**
  Check the V.35 cabling and the line between the modems. Read the modem manual

Synchronous Link Application Examples

MikroTik Router to MikroTik Router

Let us consider the following network setup with two MikroTik Routers connected to a leased line with baseband modems:

The driver for MOXA C101 card should be loaded and the interface should be enabled according to the instructions given above. The IP addresses assigned to the synchronous interface should be as follows:

```
[admin@MikroTik] interface moxa-c101> monitor 0
 dtr: yes
 rts: yes
 cts: yes
 dsr: yes
 dcd: yes
[admin@MikroTik] interface moxa-c101>
```

```
Troubleshooting

Description

• The synchronous interface does not show up under the interfaces list
 Obtain the required license for synchronous feature

• The synchronous link does not work
 Check the V.35 cabling and the line between the modems. Read the modem manual

Synchronous Link Application Examples

MikroTik Router to MikroTik Router

Let us consider the following network setup with two MikroTik Routers connected to a leased line with baseband modems:

The driver for MOXA C101 card should be loaded and the interface should be enabled according to the instructions given above. The IP addresses assigned to the synchronous interface should be as follows:

```
[admin@MikroTik] ip address> add address 1.1.1.1/32 interface wan \n  ... network 1.1.1.2 broadcast 255.255.255.255
[admin@MikroTik] ip address> print
Flags: X - disabled, I - invalid, D - dynamic
# ADDRESS     NETWORK     BROADCAST     INTERFACE
0 10.0.0.254/24  10.0.0.254  10.0.0.255   ether2
1 192.168.0.254/24  192.168.0.254  192.168.0.255  ether1
2 1.1.1.1/32      1.1.1.2   255.255.255.255  wan
[admin@MikroTik] ip address> /ping 1.1.1.2
1.1.1.2 64 byte pong: ttl=255 time=31 ms
1.1.1.2 64 byte pong: ttl=255 time=26 ms
1.1.1.2 64 byte pong: ttl=255 time=26 ms
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 26/27.6/31 ms
[admin@MikroTik] ip address>

The default route should be set to the gateway router 1.1.1.2:

```
[admin@MikroTik] ip route> add gateway 1.1.1.2
[admin@MikroTik] ip route> print
Flags: X - disabled, I - invalid, D - dynamic, J - rejected,
C - connect, S - static, R - rip, O - ospf, B - bgp
DST-ADDRESS G GATEWAY DISTANCE INTERFACE
0 S 0.0.0.0/0 r 1.1.1.2 1 wan
1 DC 10.0.0.0/24 r 10.0.0.254 1 ether2
2 DC 192.168.0.0/24 r 192.168.0.254 0 ether1
3 DC 1.1.1.2/32 r 0.0.0.0 0 wan
[admin@MikroTik] ip route>
```
The configuration of the MikroTik router at the other end is similar:

```
[admin@MikroTik] ip address> add address 1.1.1.2/32 interface moxa
... network 1.1.1.1 broadcast 255.255.255.255
[admin@MikroTik] ip address> print
Flags: X - disabled, I - invalid, D - dynamic
 # ADDRESS NETWORK BROADCAST INTERFACE
0 10.1.1.12/24 10.1.1.12 10.1.1.255 Public
1 1.1.1.2/32 1.1.1.1 255.255.255.255 moxa
[admin@MikroTik] ip address> /ping 1.1.1.1
1.1.1.1 64 byte pong: ttl=255 time=31 ms
1.1.1.1 64 byte pong: ttl=255 time=26 ms
1.1.1.1 64 byte pong: ttl=255 time=26 ms
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 26/27.6/31 ms
[admin@MikroTik] ip address>
```

**MikroTik Router to Cisco Router**

Let us consider the following network setup with MikroTik Router connected to a leased line with baseband modems and a CISCO router at the other end:

The driver for MOXA C101 card should be loaded and the interface should be enabled according to the instructions given above. The IP addresses assigned to the synchronous interface should be as follows:

```
[admin@MikroTik] ip address> add address 1.1.1.1/32 interface wan
... network 1.1.1.2 broadcast 255.255.255.255
[admin@MikroTik] ip address> print
Flags: X - disabled, I - invalid, D - dynamic
 # ADDRESS NETWORK BROADCAST INTERFACE
0 10.0.0.254/24 10.0.0.254 10.0.0.255 ether2
1 192.168.0.254/24 192.168.0.254 192.168.0.255 ether1
2 1.1.1.1/32 1.1.1.1 255.255.255.255 wan
[admin@MikroTik] ip address> /ping 1.1.1.2
1.1.1.2 64 byte pong: ttl=255 time=31 ms
1.1.1.2 64 byte pong: ttl=255 time=26 ms
1.1.1.2 64 byte pong: ttl=255 time=26 ms
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 26/27.6/31 ms
[admin@MikroTik] ip address>
```

The default route should be set to the gateway router 1.1.1.2:

```
[admin@MikroTik] ip route> add gateway 1.1.1.2
[admin@MikroTik] ip route> print
Flags: X - disabled, I - invalid, D - dynamic, J - rejected,
C - connect, S - static, R - rip, O - ospf, B - bgp
 # DST-ADDRESS G GATEWAY DISTANCE INTERFACE
0 S 0.0.0.0/0 r 1.1.1.2 1 wan
1 DC 10.0.0.0/24 r 10.0.0.254 0 ether2
2 DC 192.168.0.0/24 r 192.168.0.254 0 ether1
3 DC 1.1.1.2/32 r 1.1.1.1 0 wan
[admin@MikroTik] ip route>
```

The configuration of the Cisco router at the other end (part of the configuration) is:

```
CISCO#show running-config
Building configuration...
Current configuration:
...;
interface Ethernet0
description connected to EthernetLAN
ip address 10.1.1.12 255.255.255.0
```
interface Serial0
  description connected to MikroTik
  ip address 1.1.1.2 255.255.255.252
  serial restart-delay 1
!
ip classless
ip route 0.0.0.0 0.0.0.0 10.1.1.254
!
...
end

CISCO#

Send ping packets to the MikroTik router:

CISCO#ping 1.1.1.1

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 1.1.1.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 28/32/40 ms
CISCO#

Note! Keep in mind that for the point-to-point link the network mask is set to 32 bits, the argument network is set to the IP address of the other end, and the broadcast address is set to 255.255.255.255.
MOXA C502 Dual-port Synchronous Interface

Document revision 1.1 (Fri Mar 05 08:16:21 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
General Information
   Summary
   Specifications
   Related Documents
   Description
   Additional Documents
Synchronous Interface Configuration
   Description
   Property Description
   Notes
   Example
Troubleshooting
   Description
Synchronous Link Application Examples
   MikroTik Router to MikroTik Router
   MikroTik Router to Cisco Router

General Information

Summary

The MikroTik RouterOS supports the MOXA C502 PCI Dual-port Synchronous 8Mb/s Adapter hardware. The V.35 synchronous interface is the standard for VSAT and other satellite modems. However, you must check with the satellite system supplier for the modem interface type.

Specifications

Packages required: synchronous
License required: level4
Home menu level: /interface moxa-c502
Standards and Technologies: Cisco/HDLC-X.25 (RFC 1356), Frame Relay (RFC1490), PPP (RFC-1661), PPP (RFC-1662)
Hardware usage: Not significant

Related Documents

- Package Management
- Device Driver List
- IP Addresses and ARP
Log Management

Description

You can install up to four MOXA C502 synchronous cards in one PC box, if you have so many PCI slots available. Assuming you have all necessary packages and licences installed, in most cases it should to be done nothing at that point (all drivers are loaded automatically).

Additional Documents

For more information about the MOXA C502 Dual-port Synchronous 8Mb/s Adapter hardware please see:

- **C502 Dual Port Sync Board User's Manual** the user's manual in PDF format

Synchronous Interface Configuration

Home menu level: /interface moxa-c502

Description

Moxa c502 synchronous interface is shown under the interfaces list with the name moxa-c502-N

Property Description

- **name** *(name; default: moxa-c502-N)* - interface name
- **cisco-hdlc-keepalive-interval** *(time; default: 10s)* - keepalive period in seconds
- **clock-rate** *(integer; default: 64000)* - speed of internal clock
- **clock-source** *(external | internal | tx-from-rx | tx-internal; default: external)* - clock source
- **frame-relay-dce** *(yes | no; default: no)* - operate or not in DCE mode
- **frame-relay-lmi-type** *(ansi | ccitt; default:ansi)* - Frame-relay Local Management Interface type:
  - **ansi** - set LMI type to ANSI-617d (also known as Annex A)
  - **ccitt** - set LMI type to CCITT Q933a (also known as Annex A)
- **ignore-dcd** *(yes | no; default: no)* - ignore or not DCD
- **line-protocol** *(cisco-hdlc | frame-relay | sync-ppp; default: sync-ppp)* - line protocol name
- **mtu** *(integer; default: 1500)* - Maximum Transmit Unit

Notes

There will be TWO interfaces for each MOXA C502 card since the card has TWO ports.

The MikroTik driver for the MOXA C502 Dual Synchronous adapter allows you to unplug the V.35 cable from one modem and plug it into another modem with a different clock speed, and you do not need to restart the interface or router.

The default encapsulation method for CISCO is **HDLC**. If you have not changed this setting on CISCO, you should change **line-protocol** to **cisco-hdlc** for Moxa C502 interface.
Example

```
[admin@MikroTik] interface moxa-c502> set 0,1 line-protocol=cisco-hdlc
[admin@MikroTik] interface moxa-c502> print
Flags: X - disabled, R - running
 0 R name="moxa-c502-1" mtu=1500 line-protocol=cisco-hdlc clock-rate=64000
clock-source=external frame-relay-lmi-type=ansi frame-relay-dce=no
 cisco-hdlc-keepalive-interval=10s
 1 R name="moxa-c502-2" mtu=1500 line-protocol=cisco-hdlc clock-rate=64000
clock-source=external frame-relay-lmi-type=ansi frame-relay-dce=no
 cisco-hdlc-keepalive-interval=10s
[admin@MikroTik] interface moxa-c502>
```

You can monitor the status of the synchronous interface:

```
[admin@MikroTik] interface moxa-c502> monitor 0
dtr: yes
rts: yes
cert: no
dsr: no
dcd: no
[admin@MikroTik] interface moxa-c502>
```

Connect a communication device, e.g., a baseband modem, to the V.35 port and turn it on. If the link is working properly the status of the interface is:

```
[admin@MikroTik] interface moxa-c502> monitor 0
dtr: yes
rts: yes
cert: yes
dsr: yes
dcd: yes
[admin@MikroTik] interface moxa-c502>
```

Troubleshooting

Description

- **The synchronous interface does not show up under the interfaces list**
  Obtain the required license for synchronous feature
- **The synchronous link does not work**
  Check the V.35 cabling and the line between the modems. Read the modem manual

Synchronous Link Application Examples

MikroTik Router to MikroTik Router

Let us consider the following network setup with two MikroTik Routers connected to a leased line with baseband modems:

The driver for MOXA C502 card should be loaded and the interface should be enabled according to the instructions given above. The IP addresses assigned to the synchronous interface should be as follows:
The default route should be set to the gateway router 1.1.1.2:

```
[admin@MikroTik] ip route> add gateway 1.1.1.2 interface wan

[admin@MikroTik] ip route> print
Flags: X - disabled, I - invalid, D - dynamic, J - rejected, C - connect, S - static, R - rip, O - ospf, B - bgp
DST-ADDRESS G GATEWAY DISTANCE INTERFACE
 0 S 0.0.0.0/0 r 1.1.1.2 1 wan
 1 DC 10.0.0.0/24 r 10.0.0.254 1 ether2
 2 DC 192.168.0.0/24 r 192.168.0.254 0 ether1
 3 DC 1.1.1.1/32 r 0.0.0.0 0 wan
```

The configuration of the MikroTik router at the other end is similar:

```
[admin@MikroTik] ip route> add address 1.1.1.2/32 interface moxa

[admin@MikroTik] ip address> print
Flags: X - disabled, I - invalid, D - dynamic
ADDRESS NETWORK BROADCAST INTERFACE
 0 10.0.0.0.254/24 10.0.0.254 10.0.0.255 ether2
 1 192.168.0.254/24 192.168.0.254 192.168.0.255 ether1
 2 1.1.1.1/32 1.1.1.1 255.255.255.255 wan
```

MikroTik Router to Cisco Router

Let us consider the following network setup with MikroTik Router connected to a leased line with baseband modems and a CISCO router at the other end:

The driver for MOXA C502 card should be loaded and the interface should be enabled according to the instructions given above. The IP addresses assigned to the synchronous interface should be as follows:

```
[admin@MikroTik] ip address> add address 1.1.1.1/32 interface wan

[admin@MikroTik] ip address> print
Flags: X - disabled, I - invalid, D - dynamic
ADDRESS NETWORK BROADCAST INTERFACE
 0 10.0.0.0.254/24 10.0.0.254 10.0.0.255 ether2
 1 192.168.0.254/24 192.168.0.254 192.168.0.255 ether1
 2 1.1.1.1/32 1.1.1.1 255.255.255.255 wan
```
1.1.1.2 64 byte pong: ttl=255 time=26 ms
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 26/27.6/31 ms
[admin@MikroTik] ip address>

The default route should be set to the gateway router 1.1.1.2:

[admin@MikroTik] ip route> add gateway 1.1.1.2
[admin@MikroTik] ip route> print
Flags: X - disabled, I - invalid, D - dynamic, J - rejected,
C - connect, S - static, R - rip, O - ospf, B - bgp
# DST-ADDRESS G Gateway DISTANCE INTERFACE
0 S 0.0.0.0/0 r 1.1.1.2 1 wan
1 D 10.0.0.0/24 r 10.0.0.254 0 ether2
2 DC 192.168.0.0/24 r 192.168.0.254 0 ether1
3 DC 1.1.1.2/32 r 1.1.1.1 0 wan
[admin@MikroTik] ip route>

The configuration of the Cisco router at the other end (part of the configuration) is:

CISCO#show running-config
Building configuration...
Current configuration:
...
! interface Ethernet0
   description connected to EthernetLAN
   ip address 10.1.1.12 255.255.255.0
!
! interface Serial0
   description connected to MikroTik
   ip address 1.1.1.2 255.255.255.252
   serial restart-delay 1
!
! ip classless
! ip route 0.0.0.0 0.0.0.0 10.1.1.254
!
... end
CISCO#

Send ping packets to the MikroTik router:

CISCO#ping 1.1.1.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 1.1.1.1, timeout is 2 seconds:
!!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 28/32/40 ms
CISCO#

Note! Keep in mind that for the point-to-point link the network mask is set to 32 bits, the argument network is set to the IP address of the other end, and the broadcast address is set to 255.255.255.255.
PPP and Asynchronous Interfaces

Table of Contents

General Information
  Summary
  Specifications
  Related Documents
  Additional Documents
Serial Port Configuration
  Property Description
  Notes
  Example
PPP Server Setup
  Description
  Property Description
  Example
PPP Client Setup
  Description
  Property Description
  Notes
  Example
PPP Application Example
  Client - Server Setup

General Information

Summary

PPP (Point-to-Point Protocol) provides a method for transmitting datagrams over serial point-to-point links. Physically it relies on com1 and com2 ports from standard PC hardware configurations. These appear as serial0 and serial1 automatically. You can add more serial ports to use the router for a modem pool using these adapters:

- MOXA (http://www.moxa.com) Smartio CP-132 2-port PCI multiport asynchronous board with maximum of 8 ports (4 cards)
- MOXA (http://www.moxa.com) Smartio C104H, CP-114 or CT-114 4-port PCI multiport asynchronous board with maximum of 16 ports (4 cards)
- MOXA (http://www.moxa.com) Smartio C168H, CP-168H or CP-168U 8-port PCI multiport asynchronous board with maximum of 32 ports (4 cards)
- Cyclades (http://www.cyclades.com) Cyclom-Y Series 4 to 32 port PCI multiport asynchronous board with maximum of 128 ports (4 cards)
• Cyclades (http://www.cyclades.com) Cyclades-Z Series 16 to 64 port PCI multiport asynchronous board with maximum of 256 ports (4 cards)
• TCL DataBooster 4 or 8 port High Speed Buffered PCI Communication Controllers

Specifications
Packages required: **ppp**
License required: **level1**
Home menu level: `/interface ppp-client, /interface ppp-server`
Standards and Technologies: **PPP (RFC 1661)**
Hardware usage: **Not significant**

Related Documents

• Package Management
• Device Driver List
• IP Addresses and ARP
• Log Management
• AAA

Additional Documents

• http://www.ietf.org/rfc/rfc2138.txt?number=2138
• http://www.ietf.org/rfc/rfc2138.txt?number=2139

Serial Port Configuration
Home menu level: `/port`

Property Description

- **name** (name; default: serialN) - port name
- **used-by** (read-only: text) - shows the user of the port. Only free ports can be used in PPP setup
- **baud-rate** (integer; default: 9600) - maximal data rate of the port
- **data-bits** (7 | 8; default: 8) - number of bits per character transmitted
- **parity** (none | even | odd; default: none) - character parity check method
- **stop-bits** (1 | 2; default: 1) - number of stop bits after each character transmitted
- **flow-control** (none | hardware | xon-xoff; default: hardware) - flow control method

Notes

Keep in mind that **baud-rate, data-bits, parity, stop-bits** and **flow control** parameters must be the same for both communicating sides.
Example

[admin@MikroTik] > /port print
# | NAME | USED-BY          | BAUD-RATE
0 | serial0 | Serial Console | 9600
1 | databooster1 |          | 9600
2 | databooster2 |          | 9600
3 | databooster3 |          | 9600
4 | databooster4 |          | 9600
5 | databooster5 |          | 9600
6 | databooster6 |          | 9600
7 | databooster7 |          | 9600
8 | databooster8 |          | 9600
9 | cycladesA1 |          | 9600
10 | cycladesA2 |          | 9600
11 | cycladesA3 |          | 9600
12 | cycladesA4 |          | 9600
13 | cycladesA5 |          | 9600
14 | cycladesA6 |          | 9600
15 | cycladesA7 |          | 9600
16 | cycladesA8 |          | 9600
[admin@MikroTik] > set 9 baud-rate=38400
[admin@MikroTik] >

PPP Server Setup

Home menu level: /interface ppp-server

Description

PPP server provides a remote connection service for users. When dialing in, the users can be authenticated locally using the local user database in the /user menu, or at the RADIUS server specified in the /ip ppp settings.

Property Description

port (name; default: (unknown)) - serial port

authentication (multiple choice: mschap2, mschap1, chap, pap; default: mschap2, mschap1, chap, pap) - authentication protocol

profile (name; default: default) - profile name used for the link

mtu (integer; default: 1500) - Maximum Transmission Unit. Maximum packet size to be transmitted

mru (integer; default: 1500) - Maximum Receive Unit

null-modem (no | yes; default: no) - enable/disable null-modem mode (when enabled, no modem initialization strings are sent)

modem-init (text; default: "") - modem initialization string. You may use "s11=40" to improve dialing speed

ring-count (integer; default: 1) - number of rings to wait before answering phone

name (name; default: ppp-inN) - interface name for reference

Example

You can add a PPP server using the add command:
PPP Client Setup

Home menu level: /interface ppp-client

Description

The section describes PPP clients configuration routines.

Property Description

port ( name ; default: (unknown) ) - serial port
user ( text ; default: "" ) - P2P user name on the remote server to use for dialout
password ( text ; default: "" ) - P2P user password on the remote server to use for dialout
profile ( name ; default: default ) - local profile to use for dialout
allow ( multiple choice: mschap2, mschap1, chap, pap ; default: mschap2, mschap1, chap, pap ) - the protocol to allow the client to use for authentication
phone ( integer ; default: "" ) - phone number for dialout
tone-dial ( yes | no ; default: yes ) - defines whether use tone dial or pulse dial
mtu ( integer ; default: 1500 ) - Maximum Transmission Unit. Maximum packet size to be transmitted
mru ( integer ; default: 1500 ) - Maximum Receive Unit
null-modem ( no | yes ; default: no ) - enable/disable null-modem mode (when enabled, no modem initialization strings are sent)
modem-init ( text ; default: "" ) - modem initialization strings. You may use "s11=40" to improve dialing speed
dial-on-demand ( yes | no ; default: no ) - enable/disable dial on demand
add-default-route ( yes | no ; default: no ) - add PPP remote address as a default route
use-peer-dns ( yes | no ; default: no ) - use DNS server settings from the remote server

Notes

- Additional client profiles must be configured on the server side for clients to accomplish logon procedure. For more information see Related Documents section.
- PPP client profiles must match at least partially (local-address and values related to encryption should match) with corresponding remote server values.
Example

You can add a PPP client using the `add` command:

```
[admin@MikroTik] interface ppp-client> add name=test user=test port=serial1 \
 ... add-default-route=yes
[admin@MikroTik] interface ppp-client> print
Flags: X - disabled, R - running
 0 X name="test" mtu=1500 mru=1500 port=serial1 user="test" password=""
 profile=default phone="" tone-dial=yes modem-init="" null-modem=no
 dial-on-demand=no add-default-route=yes use-peer-dns=no
```

```
[admin@MikroTik] interface ppp-client> enable 0
[admin@MikroTik] interface ppp-client> monitor test
[admin@MikroTik] interface ppp-client> monitor 0
 status: "dialing out..."
```

PPP Application Example

Client - Server Setup

In this example we will consider the following network setup:

For a typical server setup we need to add one user to the R1 and configure the PPP server.

```
[admin@MikroTik] ppp secret> add name=test password=test local-address=3.3.3.1 \
 ... remote-address=3.3.3.2
[admin@MikroTik] ppp secret> print
Flags: X - disabled
 0 name="test" service=any caller-id="" password="test" profile=default
 local-address=3.3.3.1 remote-address=3.3.3.2 routes=""
```

```
[admin@MikroTik] interface ppp-secret> /int ppp-server
[admin@MikroTik] interface ppp-server> add port=serial1 disabled=no
[admin@MikroTik] interface ppp-server> print
Flags: X - disabled, R - running
 0 name="ppp-in1" mtu=1500 mru=1500 port=serial1
 authentication=mschap2,mschap1,chap,pap profile=default modem-init=""
 ring-count=1 null-modem=no
```

Now we need to setup the client to connect to the server:

```
[admin@MikroTik] interface ppp-client> add port=serial1 user=test password=test \
 ... phone=132
[admin@MikroTik] interface ppp-client> print
Flags: X - disabled, R - running
 0 X name="ppp-out1" mtu=1500 mru=1500 port=serial1 user="test"
 password="test" profile=default phone="" tone-dial=yes modem-init=""
 null-modem=no dial-on-demand=no add-default-route=no
 use-peer-dns=no
```

```
[admin@MikroTik] interface ppp-client> enable 0
After a short duration of time the routers will be able to ping each other:
[admin@MikroTik] interface ppp-client> /ping 3.3.3.1
3.3.3.1 64 byte ping: ttl=64 time=43 ms
3.3.3.1 64 byte ping: ttl=64 time=11 ms
3.3.3.1 64 byte ping: ttl=64 time=12 ms
3.3.3.1 64 byte ping: ttl=64 time=11 ms
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max = 11/19.2/43 ms
```
[admin@MikroTik] interface ppp-client>
General Information

Summary

The MikroTik RouterOS supports the following RadioLAN 5.8GHz Wireless Adapter hardware:

- RadioLAN ISA card (Model 101)
- RadioLAN PCMCIA card

For more information about the RadioLAN adapter hardware please see the relevant User’s Guides and Technical Reference Manuals.

Specifications

Packages required: radiolan
License required: level4
Home menu level: /interface radiolan
Hardware usage: Not significant

Related Documents

- Package Management
- Device Driver List
- IP Addresses and ARP
- Log Management
Installing the Wireless Adapter

These installation instructions apply to non-Plug-and-Play ISA cards. If you have a Plug-and-Play compliant system AND PnP OS Installed option in system BIOS is set to Yes AND you have a Plug-and-Play compliant ISA or PCI card (using PCMCIA or CardBus card with Plug-and-Play compliant adapter), the driver should be loaded automatically. If it is not, these instructions may also apply to your system.

The basic installation steps of the wireless adapter should be as follows:

1. Check the system BIOS settings for peripheral devices, like, Parallel or Serial communication ports. Disable them, if you plan to use IRQ's assigned to them by the BIOS.
2. Use the RLProg.exe to set the IRQ and Base Port address of the RadioLAN ISA card (Model 101). RLProg must not be run from a DOS window. Use a separate computer or a bootable floppy to run the RLProg utility and set the hardware parameters. The factory default values of I/O 0x300 and IRQ 10 might conflict with other devices.

Please note, that not all combinations of I/O base addresses and IRQs may work on your motherboard. As it has been observed, the IRQ 5 and I/O 0x300 work in most cases.

Wireless Interface Configuration

Home menu level: /interface radiolan

Description

To set the wireless interface for working with another wireless card in a point-to-point link, you should set the following parameters:

- The Service Set Identifier. It should match the sid of the other card.
- The Distance should be set to that of the link. For example, if you have 6 km link, use distance 4.7 km - 6.6 km.

All other parameters can be left as default. You can monitor the list of neighbors having the same sid and being within the radio range.

Property Description

name (name ; default: radiolanN) - assigned interface name
mtu (integer ; default: 1500) - Maximum Transmission Unit
mac-address (read-only: MAC address) - MAC address
distance (0-150m | 10.2km-13.0km | 2.0km-2.9km | 4.7km-6.6km | 1.1km-2.0km | 150m-1.1km | 2.9km-4.7km | 6.6km-10.2km ; default: 0-150m) - distance setting for the link
rx-diversity (enabled | disabled ; default: disabled) - receive diversity
tx-diversity (enabled | disabled ; default: disabled) - transmit diversity
default-destination (ap | as-specified | first-ap | first-client | no-destination ; default: first-client) - default destination. It sets the destination where to send the packet if it is not for a client in the radio network

default-address (MAC address; default: 00:00:00:00:00:00) - MAC address of a host in the radio network where to send the packet, if it is for none of the radio clients

max-retries (integer; default: 1500) - maximum retries before dropping the packet

sid (text) - Service Identifier

card-name (text) - card name

arp (disabled | enabled | proxy-arp | reply-only; default: enabled) - Address Resolution Protocol, one of the:

• disabled - the interface will not use ARP protocol
• enabled - the interface will use ARP protocol
• proxy-arp - the interface will be an ARP proxy (see corresponding manual)
• reply-only - the interface will only reply to the requests originated to its own IP addresses, but neighbor MAC addresses will be gathered from /ip arp statically set table only.

Example

[admin@MikroTik] interface radiolan> print Flags: X - disabled, R - running
0 R name="radiolan1" mtu=1500 mac-address=00:A0:D4:20:4B:E7 arp=enabled
card-name="00A0D4204BE7" sid="bbbb" default-destination=first-client
default-address=00:00:00:00:00:00 distance=0-150m max-retries=15
tx-diversity=disabled rx-diversity=disabled

[admin@MikroTik] interface radiolan>

You can monitor the status of the wireless interface:

[admin@MikroTik] interface radiolan> monitor radiolan1
default: 00:00:00:00:00:00
valid: no

[admin@MikroTik] interface radiolan>

Here, the wireless interface card has not found any neighbor.

[admin@MikroTik] interface radiolan> set 0 sid ba72 distance 4.7km-6.6km
[admin@MikroTik] interface radiolan> print Flags: X - disabled, R - running
0 R name="radiolan1" mtu=1500 mac-address=00:A0:D4:20:4B:E7 arp=enabled
card-name="00A0D4204BE7" sid="ba72" default-destination=first-client
default-address=00:00:00:00:00:00 distance=4.7km-6.6km max-retries=15
tx-diversity=disabled rx-diversity=disabled

[admin@MikroTik] interface radiolan> monitor 0
default: 00:A0:D4:20:3B:7F
valid: yes

[admin@MikroTik] interface radiolan>

Now we'll monitor other cards with the same sid within range:

[admin@MikroTik] interface radiolan> neighbor radiolan1 print Flags: A - access-point, R - registered, U - registered-to-us, D - our-default-destination
 NAME ADDRESS ACCESS-POINT
 D 00A0D4203B7F 00:A0:D4:20:3B:7F
You can test the link by pinging the neighbor by its MAC address:

```
[admin@MikroTik] interface radiolan> ping 00:a0:d4:20:3b:7f radiolan1 \
... size=1500 count=50
sent: 1
 successfully-sent: 1
 max-retries: 0
 average-retries: 0
 min-retries: 0

 sent: 11
 successfully-sent: 11
 max-retries: 0
 average-retries: 0
 min-retries: 0

 sent: 21
 successfully-sent: 21
 max-retries: 0
 average-retries: 0
 min-retries: 0

 sent: 31
 successfully-sent: 31
 max-retries: 0
 average-retries: 0
 min-retries: 0

 sent: 41
 successfully-sent: 41
 max-retries: 0
 average-retries: 0
 min-retries: 0

 sent: 50
 successfully-sent: 50
 max-retries: 0
 average-retries: 0
 min-retries: 0
```

Troubleshooting

**Description**

- **The radiolan interface does not show up under the interfaces list**
  Obtain the required license for RadioLAN 5.8GHz wireless feature

- **The wireless card does not obtain the MAC address of the default destination**
  Check the cabling and antenna alignment

**Wireless Network Applications**

**Point-to-Point Setup with Routing**

Let us consider the following network setup:

The minimum configuration required for the RadioLAN interfaces of both routers is:
1. Setting the Service Set Identifier (up to alphanumeric characters). In our case we use SSID "ba72"

2. Setting the distance parameter, in our case we have 6km link.

The IP addresses assigned to the wireless interface of Router#1 should be from the network 10.1.0.0/30, e.g.:

```
[admin@MikroTik] ip address> add address=10.1.0.1/30 interface=radiolan1
[admin@MikroTik] ip address> print
Flags: X - disabled, I - invalid, D - dynamic
ADDRESS NETWORK BROADCAST INTERFACE
 0 10.1.1.12/24 10.1.1.0 10.1.1.255 ether1
 1 10.1.0.1/30 10.1.0.0 10.1.0.3 radiolan1
[admin@MikroTik] ip address>
```

The default route should be set to the gateway router 10.1.1.254. A static route should be added for the network 192.168.0.0/24:

```
[admin@MikroTik] ip route> add gateway=10.1.1.254
[admin@MikroTik] ip route> add gateway=10.1.1.254 preferred-source=10.1.0.1
[admin@MikroTik] ip route> add dst-address=192.168.0.0/24 gateway=10.1.0.2 \...
[admin@MikroTik] ip route> print
Flags: X - disabled, I - invalid, D - dynamic, J - rejected, C - connect, S - static, R - rip, O - ospf, B - bgp
DST-ADDRESS G GATEWAY DISTANCE INTERFACE
 0 S 0.0.0.0/0 u 10.1.1.254 1 radiolan1
 1 S 192.168.0.0/24 r 10.1.0.2 1 radiolan1
 2 DC 10.1.0.0/30 r 0.0.0.0 0 radiolan1
 3 DC 10.1.1.0/24 r 0.0.0.0 0 ether1
[admin@MikroTik] ip route>
```

The Router#2 should have addresses 10.1.0.2/30 and 192.168.0.254/24 assigned to the radiolan and Ethernet interfaces respectively. The default route should be set to 10.1.0.1
Sangoma Synchronous Cards

This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
General Information
    Summary
    Specifications
    Related Documents
Synchronous Interface Configuration
    Description
    Property Description

General Information

Summary

The MikroTik RouterOS supports the following Sangoma Technologies WAN adapters:

- Sangoma S5141 (dual-port) and S5142 (quad-port) PCI RS232/V.35/X.21 (4Mbit/s - primary port and 512Kbit/s - secondary ones)
- Sangoma S5148 (single-port) and S5147 (dual-port) PCI E1/T1

Specifications

Packages required: synchronous
License required: level4
Home menu level: /interface sangoma
Standards and Technologies: X.21, V.35, T1/E1/G.703, Frame Relay, PPP, Cisco-HDLC
Hardware usage: Not significant

Related Documents

- Package Management
- Device Driver List
- IP Addresses and ARP
- Log Management

Synchronous Interface Configuration

Home menu level: /interface sangoma

Description
Property Description

active-channels ( all | integer ; default: all ) - for T1/E1 channels only. Specifies active E1/T1 channel set

chdlc-keepalive ( time ; default: 10s ) - Cisco-HDLC keepalive interval in seconds

clock-rate ( integer ; default: 64000 ) - internal clock rate in bps

clock-source ( internal | external ; default: external ) - specifies whether the card should rely on supplied clock or generate its own

frame-relay-dce ( yes | no ; default: no ) - specifies whether the device operates in Data Communication Equipment mode. The value yes is suitable only for T1 models

frame-relay-lmi-type ( ansi | ccitt ; default: ansi ) - Frame Relay Line Management Interface Protocol type

framing mode ( CRC4 | D4 | ESF | ESF-JAPAN | Non-CRC4 | Unframed ; default: ESF ) - for T1/E1 channels only. The frame mode:

• CRC4 - Cyclic Redundancy Check 4-bit (E1 Signaling, Europe)
• D4 - Fourth Generation Channel Bank (48 Voice Channels on 2 T-1s or 1 T-1c)
• ESF - Extended Superframe Format
• Non-CRC4 - plain Cyclic Redundancy Check
• Unframed - do not check frame integrity

line-build-out ( 0dB | 7.5dB | 15dB | 22.5dB | 110ft | 220ft | 330ft | 440ft | 550ft | 660ft | E1-75 | E1-120 ; default: 0dB ) - for T1/E1 channels only. Line Build Out Signal Level.

line-code ( AMI | B8ZS | HDB3 ; default: B8ZS ) - for T1/E1 channels only. Line modulation method:

• AMI - Alternate Mark Inversion
• B8ZS - Binary 8-Zero Substitution
• HDB3 - High Density Bipolar 3 Code (ITU-T)

line-protocol ( cisco-hdlc | frame-relay | sync-ppp ; default: sync-ppp ) - line protocol

media-type ( E1 | T1 | RS232 | V35 ; default: V35 ) - the hardware media used for this interface

mtu ( integer ; default: 1500 ) - Maximum Transmission Unit for the interface

name ( name ; default: sangomaN ) - descriptive interface name
LMC/SBEI Synchronous Interfaces

Document revision 0.3 (Wed Oct 13 13:18:32 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
General Information
    Summary
    Specifications
    Related Documents
Synchronous Interface Configuration
    Description
    Property Description
    Connecting two MT routers via T1 crossover

General Information

Summary

The MikroTik RouterOS supports the following Lanmedia Corp (LMC)/SBE Inc interfaces:

- LMC/SBEI wanPCI-1T3 PCI T3 (also known as DS3, 44.736Mbps)
- LMC/SBEI wanPCI-1T1E1 PCI T1/E1 (also known as DS1 or LMC1200P, 1.544 Mbps or 2.048 Mbps)

Specifications

Packages required: synchronous
License required: level4
Home menu level: /interface sbe
Standards and Technologies: T1/E1/T3/G.703, Frame Relay, PPP, Cisco-HDLC
Hardware usage: Not significant

Related Documents

- Package Management
- Device Driver List
- IP Addresses and ARP
- Log Management

Synchronous Interface Configuration

Home menu level: /interface sbe
Description

With the introduction of 2.8 release, MikroTik RouterOS supports popular SBEI wanPCI-1T3 and wanPCI-1T1E1 cards. These cards provide a router with the ability to communicate over T1, E1 and T3 links directly, without the need of external CSU/DSU equipment.

Property Description

chdlc-keepalive (time; default: 10s) - specifies the keepalive interval for Cisco HDLC protocol

circuit-type (e1 | e1-cas | e1-plain | e1-unframed | t1 | t1-unframed; default: e1) - the circuit type particular interface is connected to

clock-rate (integer; default: 64000) - internal clock rate in bps

clock-source (internal | external; default: external) - specifies whether the card should rely on supplied clock or generate its own

crc32 (yes | no; default: no) - Specifies whether to use CRC32 error correction algorithm or not

frame-relay-dce (yes | no; default: no) - specifies whether the device operates in Data Communication Equipment mode. The value yes is suitable only for T1 models

frame-relay-lmi-type (ansi | ccitt; default: ansi) - Frame Relay Line Management Interface Protocol type

line-protocol (cisco-hdlc | frame-relay | sync-ppp; default: sync-ppp) - encapsulated line protocol

long-cable (yes | no; default: no) - specifies whether to use signal phase shift for very long links

mtu (integer: 68..1500; default: 1500) - IP protocol Maximum Transmission Unit

name (name; default: sbeN) - unique interface name.

scrambler (yes | no; default: no) - when enabled, makes the card unintelligible to anyone without a special receiver

General Information

Connecting two MT routers via T1 crossover

In the following example we will configure two routers to talk to each other via T1 link. The routers are named R1 and R2 with the addresses of 10.10.10.1/24 and 10.10.10.2/24, respectively. Cisco HDLC will be used as encapsulation protocol and circuit type will be regular T1.

First, we need to configure synchronous interfaces on both routers. Keep in mind, that one of the interfaces needs to be set to use its internal clock.

- On R1 router:

```
[admin@MikroTik] > /interface sbe set sbe1 line-protocol=cisco-hdlc \ ...
clock-source=internal circuit-type=t1 disabled=no [admin@R1] > /interface sbe print
Flags: X - disabled, R - running O R name="sbe1" mtu=1500 line-protocol=cisco-hdlc
clock-rate=64000 clock-source=internal crc32=no long-cable=no scrambler=no
circuit-type=t1 frame-relay-lmi-type=ansi frame-relay-dce=no chdlc-keepalive=10s
[admin@R1] >
```

- On R2 router:
Then, we should assign IP addresses to both interfaces.

- **On R1 router:**
  
  ```
 [admin@R1] > /ip address add address 10.10.10.1/24 interface=sbe1
  ```

- **On R2 router:**
  
  ```
 [admin@R2] > /ip address add address 10.10.10.2/24 interface=sbe1
  ```

Finally, we could test connection by issuing **ping** command from **R1** router:

```
[admin@R1] > /ping 10.10.10.2
10.10.10.2 64 byte ping: ttl=64 time=7 ms
10.10.10.2 64 byte ping: ttl=64 time=8 ms
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 7/7.8/8 ms
```

```
General Information

Summary

The wireless interface operates using IEEE 802.11 set of standards. It uses radio waves as a physical signal carrier and is capable of wireless data transmission with speeds up to 108 Mbps (in 5GHz turbo-mode).

MikroTik RouterOS supports the Intersil Prism II PC/PCI, Atheros AR5000, AR5001X, AR5001X+, AR5002X+, and AR5004X+ chipset based wireless adapter cards for working as wireless clients (station mode), wireless bridges (bridge mode), wireless access points (ap-bridge mode), and for antenna positioning (alignment-only mode). For further information about supported wireless adapters, see Device Driver List.

MikroTik RouterOS provides a complete support for IEEE 802.11a, 802.11b and 802.11g wireless networking standards. There are several features implemented for the wireless data communication in RouterOS - WEP (Wired Equivalent Privacy), AES encryption, WDS (Wireless Distribution System), DFS (Dynamic Frequency Selection), Alignment mode (for positioning antennas and monitoring wireless signal), VAP (Virtual Access Point), Fast Frames, disable packet forwarding among clients, and others. You can see the feature list which are supported by various cards.

The nstreme protocol is MikroTik proprietary (i.e., incompatible with other vendors) wireless
protocol created to improve point-to-point and point-to-multipoint wireless links. Nstreme2 works with a pair of wireless cards (Atheros AR5210, AR5211, AR5212 and AR5213 MAC chips only) - one for transmitting data and one for receiving.

Benefits of nstreme protocol:

- Client polling
- Very low protocol overhead per frame allowing super-high data rates
- No protocol limits on link distance
- No protocol speed degradation for long link distances
- Dynamic protocol adjustment depending on traffic type and resource usage

Quick Setup Guide

Let's consider that you have a wireless interface, called wlan1.

- To set it as an Access Point, working in 802.11g standard in compatibility mode (i.e., both 802.11b and 802.11g clients are allowed to connect), using frequency 2442 MHz and Service Set Identifier test:

 /interface wireless set wlan1 ssid="test" frequency=2442 band=2.4ghz-b/g \ mode=ap-bridge disabled=no

 Now your router is ready to accept wireless clients.

- To make a point-to-point connection, using 802.11a standard, frequency 5805 MHz and Service Set Identifier p2p:

 /interface wireless set wlan1 ssid="p2p" frequency=5805 band=5ghz \ mode=bridge disabled=no

 The remote interface should be configured to station as showed below.

- To make the wireless interface as a wireless station, working in 802.11a standard and Service Set Identifier p2p:

 /interface wireless set wlan1 ssid="p2p" band=5ghz mode=station disabled=no

Specifications

Packages required: wireless
License required: level4 (station and bridge mode) , level5 (station, bridge and AP mode)
Home menu level: /interface wireless
Standards and Technologies: IEEE802.11a , IEEE802.11b , IEEE802.11g
Hardware usage: Not significant

Related Documents

- Package Management
- Device Driver List
- IP Addresses and ARP
- Log Management
Description

The Atheros card has been tested for distances up to 20 km providing connection speed up to 17Mbit/s. With appropriate antennas and cabling the maximum distance should be as far as 50 km. Nstreme has no distance limitations.

These values of **ack-timeout** were approximated from the tests done by us, as well as by some of our customers:

<table>
<thead>
<tr>
<th>range</th>
<th>5GHz</th>
<th>5GHz-turbo</th>
<th>2.4GHz-G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0km</td>
<td>default</td>
<td>default</td>
<td>default</td>
</tr>
<tr>
<td>5km</td>
<td>52</td>
<td>30</td>
<td>62</td>
</tr>
<tr>
<td>10km</td>
<td>85</td>
<td>48</td>
<td>96</td>
</tr>
<tr>
<td>15km</td>
<td>121</td>
<td>67</td>
<td>133</td>
</tr>
<tr>
<td>20km</td>
<td>160</td>
<td>89</td>
<td>174</td>
</tr>
<tr>
<td>25km</td>
<td>203</td>
<td>111</td>
<td>219</td>
</tr>
<tr>
<td>30km</td>
<td>249</td>
<td>137</td>
<td>368</td>
</tr>
<tr>
<td>35km</td>
<td>298</td>
<td>168</td>
<td>320</td>
</tr>
<tr>
<td>40km</td>
<td>350</td>
<td>190</td>
<td>375</td>
</tr>
<tr>
<td>45km</td>
<td>405</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Please note that these are not the precise values. Depending on hardware used and many other factors they may vary up to +/- 15 microseconds.

You can also use a **dynamic** value - the router will determine the **ack-timeout** setting automatically.

The nstreme protocol may be operated in three modes:

- **Point-to-Point mode** - controlled point-to-point mode with one radio on each side
- **Dual radio Point-to-Point mode (nstreme2)** - the protocol will use two radios on both sides simultaneously (one for transmitting data and one for receiving), allowing superfast point-to-point connection
- **Point-to-Multipoint** - controlled point-to-multipoint mode with client polling (like AP-controlled TokenRing)

Hardware Notes

The MikroTik RouterOS supports as many Atheros chipset based cards as many free adapter slots are there on your system. One license is valid for all cards on your system. Note that maximal number of PCMCIA sockets is 8.

Some chipsets are not stable with Atheros cards and cause radio to stop working. Via Epia, MikroTik RouterBoard and systems based on Intel i815 and i845 chipsets are tested and work stable.
with Atheros cards. There might be many other chipsets that are working stable, but it has been reported that some older chipsets, and some systems based on AMD Duron CPU are not stable.

Only AR5212 and newer Atheros MAC chips are stable with RouterBOARD200 connected via RouterBOARD14 four-port MiniPCI-to-PCI adapter. This note only applies to the RouterBOARD200 platform with multiple Atheros-based cards.

Wireless Interface Configuration

Home menu level: `/interface wireless`

Description

In this section we will discuss the most important part of the configuration.

Property Description

802.1x-mode (PEAP-MSCHAPV2 | none; default: none) - whether to use Protected Extensible Authentication Protocol Microsoft Challenge Handshake Authentication Protocol version 2 for authentication

ack-timeout (integer | dynamic | indoor) - acknowledgment code timeout (transmission acceptance timeout) in microseconds or one of these:
- **dynamic** - ack-timeout is chosen automatically
- **indoor** - standard constant for indoor environment

antenna-mode (ant-a | ant-b | rxa-txb | txa-rxb; default: ant-a) - which antenna to use for transmit/receive data:
- **ant-a** - use only antenna a
- **ant-b** - use only antenna b
- **rxa-txb** - use antenna a for receiving packets, use antenna b for transmitting packets
- **txa-rxb** - use antenna a for transmitting packets, antenna b for receiving packets

arp - Address Resolution Protocol setting

band - operating band
- **2.4ghz-b** - IEEE 802.11b
- **2.4ghz-b/g** - IEEE 802.11b and IEEE 802.11g
- **2.4ghz-g-turbo** - IEEE 802.11g up to 108 Mbit
- **2.4ghz-onlyg** - IEEE 802.11g
- **5ghz** - IEEE 802.11a up to 54 Mbit
- **5ghz-turbo** - IEEE 802.11a up to 108Mbit

basic-rates-a/g (multiple choice: 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps; default: 6Mbps) - basic rates in 802.11a or 802.11g standard (this should be the minimal speed all the wireless network nodes support). It is recommended to leave this as default

basic-rates-b (multiple choice: 1Mbps, 2Mbps, 5.5Mbps, 11Mbps; default: 1Mbps) - basic rates in 802.11b mode (this should be the minimal speed all the wireless network nodes support). It is recommended to leave this as default
burst-time (time; default: disabled) - time in microseconds which will be used to send data without stopping. Note that other wireless cards in that network will not be able to transmit data for burst-time microseconds. This setting is available only for AR5000, AR5001X, and AR5001X+ chipset based cards.

default-authentication (yes | no; default: yes) - specifies the default action for clients or APs that are not in access list
 • yes - enables AP to register a client even if it is not in access list. In turn for client it allows to associate with AP not listed in client's access list.

default-forwarding (yes | no; default: yes) - to use data forwarding by default or not. If set to 'no', the registered clients will not be able to communicate with each other.

dfs-mode (none | radar-detect | no-radar-detect; default: none) - used for APs to dynamically select frequency at which this AP will operate
 • none - do not use DFS
 • no-radar-detect - AP scans channel list from scan-list and chooses the frequency which is with the lowest amount of other networks detected
 • radar-detect - AP scans channel list from scan-list and chooses the frequency which is with the lowest amount of other networks detected, if no radar is detected in this channel for 60 seconds, the AP starts to operate at this channel, if radar is detected while working in AP mode, the AP continues searching for the next available channel where no radar is detected

disable-running-check (yes | no; default: no) - disable running check. If value is set to 'no', the router determines whether the card is up and running - for AP one or more clients have to be registered to it, for station, it should be connected to an AP. This setting affects the records in the routing table in a way that there will be no route for the card that is not running (the same applies to dynamic routing protocols). If set to 'yes', the interface will always be shown as running.

disconnect-timeout (time; default: 3s) - how long after the disconnect to keep the client in the registration table and keep trying to sending packets.

fast-frames (yes | no; default: no) - whether to pack smaller packets into a larger one, which makes larger data rates possible.

frequency (integer; default: 5120) - operating frequency of the card.

hide-ssid (yes | no; default: no) - whether to hide ssid or not in the beacon frames:
 • yes - ssid is not included in the beacon frames. AP replies only to probe-requests with the given ssid.
 • no - ssid is included in beacon frames. AP replies to probe-requests with the given ssid ant to 'broadcast ssid' (empty ssid).

interface-type (read-only: text) - adapter type and model.

mac-address (read-only: MAC address) - MAC address.

master-device (name) - physical wireless interface name that will be used by Virtual Access Point (VAP) interface.

max-station-count (integer: 1 ..2007; default: 2007) - maximal number of clients allowed to connect to AP.

mode (alignment-only | ap-bridge | bridge | nstreame-dual-slave | station | station-wds | wds-slave; default: station) - operating mode:
 • alignment-only - this mode is used for positioning antennas (to get the best direction).
- **ap-bridge** - the interface is operating as an Access Point
- **bridge** - the interface is operating as a bridge
- **nstreme-dual-slave** - the interface is used for nstreme-dual mode
- **station** - the interface is operating as a client
- **station-wds** - the interface is working as a station, but can communicate with a WDS peer
- **wds-slave** - the interface is working as it would work in ap-bridge mode, but it adapts to its WDS peer's frequency if it is changed

mtu (:integer: 68 ..1600 ; default: 1500) - Maximum Transmission Unit

name (:name; default: wlanN) - assigned interface name

noise-floor-threshold (:integer | default: -128 ..127 ; default: default) - noise level threshold in dBm. Below this threshold we agree to transmit

on-failure-retry-time (:time; default: 100ms) - in what interval keep trying to send packets in case of failure

prism-cardtype (:30mW | 100mW | 200mW) - specify the output of the Prism chipset based card

radio-name (:name) - MT proprietary extension for Atheros cards

rate-set (:default | configured) - which rate set to use:
 - **default** - basic and supported-rates settings are not used, instead default values are used.
 - **configured** - basic and supported-rates settings are used as configured

scan-list (:multiple choice: integer | default-ism; default: default-ism) - the list of channels to scan
 - **default-ism** - for 2.4ghz mode: 2412, 2417, 2422, 2427, 2432, 2437, 2442, 2447, 2452, 2457, 2462, 2467, 2472; for 5ghz mode: 5180, 5200, 5220, 5240, 5260, 5280, 5300, 5320, 5745, 5765, 5785, 5805; for 5ghz-turbo: 5210, 5250, 5290, 5760, 5800

server-certificate - not implemented, yet

ssid (:text; default: MikroTik) - Service Set Identifier. Used to separate wireless networks

supported-rates-a/g (:multiple choice: 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps) - rates to be supported in 802.11a or 802.11g standard

supported-rates-b (:multiple choice: 1Mbps, 2Mbps, 5.5Mbps, 11Mbps) - rates to be supported in 802.11b standard

tx-power (:integer | default; default: default) - transmit power in dBm
 - **default** - default value of the card

update-stats-interval (:integer | disabled; default: disabled) - specifies how often the card will ask the remote end for information about connection quality.
 - **default** - each time you registration-tab print command is issued or this information queried via SNMP, the results from last similar action will be returned

wds-default-bridge (:name; default: none) - the default bridge for WDS interface. If you use dynamic WDS then it is very useful in cases when wds connection is reset - the newly created dynamic WDS interface will be put in this bridge

wds-ignore-ssid (:yes | no; default: no) - if set to 'yes', the AP will create WDS links with any other AP in this frequency. If set to 'no' the ssid values must match on both APs

wds-mode (:disabled | dynamic | static) - WDS mode:
 - **disabled** - WDS interfaces are disabled
- **dynamic** - WDS interfaces are created 'on the fly'
- **static** - WDS interfaces are created manually

Notes

It is strongly suggested to leave basic rates at the lowest setting possible.

Before it will be possible to manually control

If **disable-running-check** value is set to **no**, the router determines whether the network interface is up and running - in order to show flag **R** for AP, one or more clients have to be registered to it, for station, it should be connected to an AP. If the interface does not appear as running (**R**), its route in the routing table is shown as **invalid**! If set to **yes**, the interface will always be shown as running.

The **tx-power** default setting is the maximum tx-power that the card can use. If you want to use larger tx-rates, you are able to set them, but **do it at your own risk**! Usually, you can use this parameter to reduce the **tx-power**.

You should set **tx-power** property to an appropriate value as many cards do not have their default setting set to the maximal power it can work on. For the cards MikroTik is selling (5G/ABM), 20dBm (100mW) is the maximal power in 5GHz bands and 18dBm (65mW) is the maximal power in 2.4GHz bands.

For different versions of Atheros chipset there are different value range of **ack-timeout** property:

<table>
<thead>
<tr>
<th>Chipset version</th>
<th>5GHz</th>
<th>5GHz-turbo</th>
<th>2GHz-B</th>
<th>2GHz-G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>default</td>
<td>max</td>
<td>default</td>
<td>max</td>
</tr>
<tr>
<td>5000 (5.2GHz only)</td>
<td>30</td>
<td>204</td>
<td>22</td>
<td>102</td>
</tr>
<tr>
<td>5211 (802.11a/b)</td>
<td>30</td>
<td>409</td>
<td>22</td>
<td>204</td>
</tr>
<tr>
<td>5212 (802.11a/b/g)</td>
<td>25</td>
<td>409</td>
<td>22</td>
<td>204</td>
</tr>
</tbody>
</table>

If wireless interfaces are put in **nstreme-dual-slave** mode, all configuration will take place in **/interface wireless nstreme-dual** submenu described further on. In that case, configuration made in this submenu will be ignored. Also WDS mode can not be used together with the Nstreme-dual

Example

Let us consider an example: a MikroTik router is connected to an AP using Atheros card and the AP is operating in IEEE 802.11b standard with **ssid=hotspot**.

To see current interface settings:

```
[admin@MikroTik] interface wireless> print
Flags: X - disabled, R - running
 0 X name="wlan1" mtu=1500 mac-address=00:01:24:70:3D:4E arp=enabled
disable-running-check=no interface-type=Atheros AR5211 mode=station
ssid="MikroTik" frequency=5180 band=5GHz scan-list=default-ism
supported-rates-b=1Mbps,2Mbps,5.5Mbps,11Mbps
supported-rates-a/g=6Mbps,9Mbps,12Mbps,18Mbps,24Mbps,36Mbps,48Mbps,54Mbps
basic-rates-b=1Mbps basic-rates-a/g=6Mbps max-station-count=2007
ack-timeout=dynamic tx-power=default noise-floor-threshold=default
burst-time=disabled fast-frames=no dfs-mode=none antenna-mode=ant-a
```
Set the **ssid** to *hotspot* and enable the interface. Use the monitor command to see the connection status.

```
[admin@MikroTik] interface wireless>
```

```
[admin@MikroTik] interface wireless> set 0 ssid=hotspot band=2.4ghz-b \\
   disabled=no
[admin@MikroTik] interface wireless> mo 0
   status: connected-to-ess
   band: 2.4ghz-b
   frequency: 2442
   tx-rate: 11Mbps
   rx-rate: 11Mbps
   ssid: hotspot
   bssid: 00:0B:6B:31:08:22
   radio-name: 000B6B310822
   signal-strength: -55
   tx-signal-strength: -55
   tx-ccq: 99
   rx-ccq: 98
   current-ack-timeout: 110
   current-distance: 110
   wds-link: no
   nstreme: no
   framing-mode: none
   routeros-version: 2.8.15
   last-ip: 192.168.0.254
```

?[admin@MikroTik] interface wireless>

Monitor from the Access Point:

```
[admin@AP] interface wireless> mo 0
   status: running-ap
   band: 2.4ghz-b
   frequency: 2442
   overall-tx-ccq: 58
   registered-clients: 2
   current-ack-timeout: 30
   current-distance: 30
   nstreme: no
```

Nstreme Settings

Home menu level: `/interface wireless nstreme`

Description

You can switch a wireless card to the nstreme mode. In that case the card will work only with nstreme clients.

Property Description

- `enable-nstreme (yes | no ; default: no)` - whether to switch the card into the nstreme mode
- `enable-polling (yes | no ; default: yes)` - whether to use polling for clients
- `framer-limit (integer ; default: 3200)` - maximal frame size
- `framer-policy (none | best-fit | exact-size | fast-frames | dynamic-size ; default: none)` - the method how to combine frames (like fast-frames setting in interface configuration). A number of frames
may be combined into one bigger one to reduce the amount of protocol overhead (and thus increase speed). The cards are not waiting for frames, but in case a number packets are queued for transmitting, they can be combined. There are several methods of framing:

- **none** - do nothing special, do not combine packets
- **fast-frames** - use fast-frame mode of the radio card
- **best-fit** - put as much packets as possible in one frame, until the framer-limit limit is met, but do not fragment packets
- **exact-size** - put as much packets as possible in one frame, until the framer-limit limit is met, even if fragmentation will be needed (best performance)
- **dynamic-size** - choose the best frame size dynamically

name (name) - reference name of the interface

Example

To enable the nstreme protocol on the **wlan1** radio with exact-size framing:

```
[admin@MikroTik] interface wireless nstreme> print
0 name="wlan1" enable-nstreme=no enable-polling=yes framer-policy=none framer-limit=3200
[admin@MikroTik] interface wireless nstreme> set wlan1 enable-nstreme=yes \...
\... framer-policy=exact-size
```

Nstreme2 Group Settings

Home menu level: /interface wireless nstreme-dual

Description

Two radios in **nstreme-dual-slave** mode can be grouped together to make nstreme2 Point-to-Point connection

Property Description

- **arp** (disabled | enabled | proxy-arp | reply-only; default: enabled) - Address Resolution Protocol setting
- **disable-running-check** (yes | no) - whether the interface should always be treated as running even if there is no connection to a remote peer
- **framer-limit** (integer; default: 4000) - maximal frame size
- **framer-policy** (none | best-fit | exact-size; default: none) - the method how to combine frames (like fast-frames setting in interface configuration). A number of frames may be combined into one bigger one to reduce the amount of protocol overhead (and thus increase speed). The cards are not waiting for frames, but in case a number packets are queued for transmitting, they can be combined. There are several methods of framing:
 - **none** - do nothing special, do not combine packets
 - **best-fit** - put as much packets as possible in one frame, until the framer-limit limit is met, but do not fragment packets
• **exact-size** - put as much packets as possible in one frame, until the framer-limit limit is met, even if fragmentation will be needed (best performance)

mac-address (*read-only: MAC address*) - MAC address of the receiving wireless card in the set

mtu (*integer: 0..65536; default: 1500*) - Maximum Transmission Unit

name (*name*) - reference name of the interface

rates-a/g (*multiple choice: 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps*) - rates to be supported in 802.11a or 802.11g standard

rates-b (*multiple choice: 1Mbps, 2Mbps, 5.5Mbps, 11Mbps*) - rates to be supported in 802.11b standard

remote-mac (*MAC address; default: 00:00:00:00:00:00*) - which MAC address to connect to (this would be the remote receiver card's MAC address)

rx-band - operating band of the receiving radio

 • **2.4ghz-b** - IEEE 802.11b
 • **2.4ghz-g** - IEEE 802.11g
 • **2.4ghz-g-turbo** - IEEE 802.11g in Atheros proprietary turbo mode (up to 108Mbit)
 • **5ghz** - IEEE 802.11a up to 54 Mbit
 • **5ghz-turbo** - IEEE 802.11a in Atheros proprietary turbo mode (up to 108Mbit)

rx-frequency (*integer; default: 5320*) - Frequency to use for receiving frames

rx-radio (*name*) - which radio should be used for receiving frames

tx-band - operating band of the transmitting radio

 • **2.4ghz-b** - IEEE 802.11b
 • **2.4ghz-g** - IEEE 802.11g
 • **2.4ghz-g-turbo** - IEEE 802.11g in Atheros proprietary turbo mode (up to 108Mbit)
 • **5ghz** - IEEE 802.11a up to 54 Mbit
 • **5ghz-turbo** - IEEE 802.11a in Atheros proprietary turbo mode (up to 108Mbit)

tx-frequency (*integer; default: 5180*) - Frequency to use for transmitting frames

tx-radio (*name*) - which radio should be used for transmitting frames

Notes

WDS can not be used on Nstreme-dual links.

Example

To enable the nstreme2 protocol on a router:

1. Having two Atheros AR5212 based cards which are not used for anything else, to group them into a nstreme interface, switch both of them into **nstreme-slave** mode:

   ```
   [admin@MikroTik] interface wireless> print
   Flags: X - disabled, R - running
   0 name="wlan1" mtu=1500 mac-address=00:0B:6B:31:02:4F arp=enabled
disable-running-check=no interface-type=Atheros AR5212
   radio-name="000B6B31024F" mode=station ssid="MikroTik" frequency=5180
   band=5GHz scan-list=default-ism
   ```
supported-rates-b=1Mbps,2Mbps,5.5Mbps,11Mbps
supported-rates-a/g=6Mbps,9Mbps,12Mbps,18Mbps,24Mbps,36Mbps,48Mbps,54Mbps

basic-rates-b=1Mbps basic-rates-a/g=6Mbps max-station-count=2007
ack-timeout=dynamic tx-power=default noise-floor-threshold=default
burst-time=disabled fast-frames=no dfs-mode=none antenna-mode=ant-a
wds-mode=disabled wds-default-bridge=none
update-stats-interval=disabled default-authentication=yes
default-forwarding=yes hide-ssid=no 802.1x-mode=none

1 name="wlan2" mtu=1500 mac-address=00:0B:6B:30:B4:A4 arp=enabled
disable-running-check=no interface-type=Atheros AR5212
radio-name="000B6B30B4A4" mode=station ssid="MikroTik" frequency=5180
band=5GHz scan-list=default-ism
supported-rates-b=1Mbps,2Mbps,5.5Mbps,11Mbps
supported-rates-a/g=6Mbps,9Mbps,12Mbps,18Mbps,24Mbps,36Mbps,48Mbps,54Mbps

basic-rates-b=1Mbps basic-rates-a/g=6Mbps max-station-count=2007
ack-timeout=dynamic tx-power=default noise-floor-threshold=default
burst-time=disabled fast-frames=no dfs-mode=none antenna-mode=ant-a
wds-mode=disabled wds-default-bridge=none
update-stats-interval=disabled default-authentication=yes
default-forwarding=yes hide-ssid=no 802.1x-mode=none

[admin@MikroTik] interface wireless> set 0,1 mode=nstreme-dual-slave

2. Then add nstreme2 interface with exact-size framing:

[admin@MikroTik] interface wireless nstreme-dual> add \
... framer-policy=exact-size

3. And configure which card will be receiving, and which - transmitting

[admin@MikroTik] interface wireless nstreme-dual> print
Flags: X - disabled, R - running
0 X name="n-streme1" mtu=1500 mac-address=00:00:00:00:00:00 arp=enabled
disable-running-check=no tx-radio=(unknown) rx-radio=(unknown)
remote-mac=00:00:00:00:00:00 tx-band=5GHz tx-frequency=5180
rates-b=1Mbps,2Mbps,5.5Mbps,11Mbps
rates-a/g=6Mbps,9Mbps,12Mbps,18Mbps,24Mbps,36Mbps,48Mbps,54Mbps
rx-band=5GHz rx-frequency=5320 framer-policy=exact-size
framer-limit=4000

[admin@MikroTik] interface wireless nstreme-dual> set 0 disabled=no \\
... tx-radio=wlan1 rx-radio=wlan2
[admin@MikroTik] interface wireless nstreme-dual>

Registration Table

Home menu level: /interface wireless registration-table

Description

In the registration table you can see various information about currently connected clients. It is used only for Access Points.

Property Description

ack-timeout (read-only: integer) - acknowledgment code timeout (transmission acceptance timeout) in microseconds or one of these
ap (read-only: no | yes) - whether the connected node is an Access Point or not
bytes (read-only: integer, integer) - number of received and sent bytes
distance (read-only: integer) - the same as ack-timeout
framing-mode (read-only: none | best-fit | exact-size | fast-frames | dynamic-size; default: none) - the method how the frames are combined
interface (read-only: name) - interface that client is registered to
last-activity (read-only: time) - last interface data tx/rx activity
mac-address (read-only: MAC address) - MAC address of the registered client
nstreme (read-only: yes | no) - whether the client uses Nstreme protocol or not
packets (read-only: integer, integer) - number of received and sent packets
radio-name (read-only: name) - MT proprietary extension for Atheros cards
routeros-version (read-only: text) - if the client is a MikroTik router, this value shows its version
rx-ccq (read-only: integer: 0 ..100) - Client Connection Quality - a value in percent that shows how effective the receive bandwidth is used regarding the theoretically maximum available bandwidth
rx-rate (read-only: integer) - receive data rate
signal-strength (read-only: integer) - signal strength in dBm
tx-ccq (read-only: integer: 0 ..100) - Client Connection Quality - a value in percent that shows how effective the transmit bandwidth is used regarding the theoretically maximum available bandwidth
tx-rate (read-only: integer) - transmit data rate
tx-signal-strength (read-only: integer) - transmit signal level in dBm
uptime (read-only: time) - time the client is associated with the access point
wds (read-only: yes | no) - whether client uses WDS or not

Example

To see registration table showing all clients currently associated with the access point:

```
[admin@MikroTik] interface wireless registration-table> print  
# INTERFACE RADIO-NAME MAC-ADDRESS AP SIGNAL... TX-RATE
0 wlan1 000124703D61 00:01:24:70:3D:61 no -66 9Mbps
```

To get additional statistics:

```
[admin@MikroTik] interface wireless> registration-table print stats
0 interface=wlan1 radio-name="000124703D61" mac-address=00:01:24:70:3D:61 
ap=no wds=no rx-rate=54Mbps tx-rate=9Mbps packet=4,28 bytes=41,2131 
frames=4,28 frame-bytes=41,2131 hw-frames=4,92 hw-frame-bytes=137,4487 
uptime=00:11:08 last-activity=00:00:03.940 signal-strength=-66 
tx-signal-strength=-61 tx-ccq=2 rx-ccq=1 ack-timeout=28 distance=28 
nstreme=no framing-mode=none routeros-version="2.8.14"
```

Access List

Home menu level: /interface wireless access-list
Description

The access list is used by the Access Point to restrict associations of clients and by clients to restrict associations to a given list of APs. This list contains MAC address of client and associated action to take when client attempts to connect. Also, the forwarding of frames sent by the client is controlled.

The association procedure is as follows: when a new client wants to associate to the AP that is configured on interface wlanN, an entry with client's MAC address and interface wlanN is looked up in the access-list. If such entry is found, action specified in the access list is performed, else default-authentication and default-forwarding arguments of interface wlanN are taken.

Property Description

authentication (yes | no; default: yes) - whether to accept or to reject this client when it tries to connect
forwarding (yes | no; default: yes) - whether to forward the client's frames to other wireless clients
interface (name) - AP interface name
mac-address (MAC address) - MAC address of the client
private-algo (104bit-wep | 40bit-wep | aes-ccm | none) - which encryption algorithm to use
private-key (text; default: "") - private key of the client to use for private-algo
skip-802.1x (yes | no) - not implemented, yet

Notes

If you have default authentication action for the interface set to yes, you can disallow this node to register at the AP's interface wlanN by setting authentication=no for it. Thus, all nodes except this one will be able to register to the interface wlanN.

If you have default authentication action for the interface set to no, you can allow this node to register at the AP's interface wlanN by setting authentication=yes for it. Thus, only the specified nodes will be able to register to the interface wlanN.

Example

To allow authentication and forwarding for the client 00:01:24:70:3A:BB from the wlan1 interface using WEP 40bit algorithm with the key 1234567890:

```
[admin@MikroTik] interface wireless access-list> add mac-address=  
\... 00:01:24:70:3A:BB interface=wlan1 private-algo=40bit-wep private-key=1234567890 
[admin@MikroTik] interface wireless access-list> print 
Flags: X - disabled 
  0 mac-address=00:01:24:70:3A:BB interface=wlan1 authentication=yes 
  forwarding=yes skip-802.1x=yes private-algo=40bit-wep 
  private-key="1234567890"
[admin@MikroTik] interface wireless access-list>
```

Info

Home menu level: /interface wireless info
Description
This facility provides you with general wireless interface information.

Property Description
2ghz-b-channels (multiple choice, read-only: 2312, 2317, 2322, 2327, 2332, 2337, 2342, 2347,
2352, 2357, 2362, 2367, 2372, 2412, 2417, 2422, 2427, 2432, 2437, 2442, 2447, 2452, 2457, 2462,
2467, 2472, 2484, 2512, 2532, 2552, 2572, 2592, 2612, 2632, 2652, 2672, 2692, 2712, 2732) - the
list of 2.4ghz IEEE 802.11b channels (frequencies are given in MHz)
2ghz-g-channels (multiple choice, read-only: 2312, 2317, 2322, 2327, 2332, 2337, 2342, 2347,
2352, 2357, 2362, 2367, 2372, 2412, 2417, 2422, 2427, 2432, 2437, 2442, 2447, 2452, 2457, 2462,
2467, 2472, 2512, 2532, 2552, 2572, 2592, 2612, 2632, 2652, 2672, 2692, 2712, 2732, 2484) - the
list of 2.4ghz IEEE 802.11g channels (frequencies are given in MHz)
5ghz-channels (multiple choice, read-only: 4920, 4925, 4930, 4935, 4940, 4945, 4950, 4955,
4960, 4965, 4970, 4975, 4980, 4985, 4990, 4995, 5000, 5005, 5010, 5015, 5020, 5025, 5030, 5035,
5040, 5045, 5050, 5055, 5060, 5065, 5070, 5075, 5080, 5085, 5090, 5095, 5100, 5105, 5110, 5115,
5120, 5125, 5130, 5135, 5140, 5145, 5150, 5155, 5160, 5165, 5170, 5175, 5180, 5185, 5190, 5195,
5200, 5205, 5210, 5215, 5220, 5225, 5230, 5235, 5240, 5245, 5250, 5255, 5260, 5265, 5270, 5275,
5280, 5285, 5290, 5295, 5300, 5305, 5310, 5315, 5320, 5325, 5330, 5335, 5340, 5345, 5350, 5355,
5360, 5365, 5370, 5375, 5380, 5385, 5390, 5395, 5400, 5405, 5410, 5415, 5420, 5425, 5430, 5435,
5440, 5445, 5450, 5455, 5460, 5465, 5470, 5475, 5480, 5485, 5490, 5495, 5500, 5505, 5510, 5515,
5520, 5525, 5530, 5535, 5540, 5545, 5550, 5555, 5560, 5565, 5570, 5575, 5580, 5585, 5590, 5595,
5600, 5605, 5610, 5615, 5620, 5625, 5630, 5635, 5640, 5645, 5650, 5655, 5660, 5665, 5670, 5675,
5680, 5685, 5690, 5695, 5700, 5705, 5710, 5715, 5720, 5725, 5730, 5735, 5740, 5745, 5750, 5755,
5760, 5765, 5770, 5775, 5780, 5785, 5790, 5795, 5800, 5805, 5810, 5815, 5820, 5825, 5830, 5835,
5840, 5845, 5850, 5855, 5860, 5865, 5870, 5875, 5880, 5885, 5890, 5895, 5900, 5905, 5910, 5915,
5920, 5925, 5930, 5935, 5940, 5945, 5950, 5955, 5960, 5965, 5970, 5975, 5980, 5985, 5990, 5995,
6000, 6005, 6010, 6015, 6020, 6025, 6030, 6035, 6040, 6045, 6050, 6055, 6060, 6065, 6070, 6075,
6080, 6085, 6090, 6095, 6100) - the list of 5ghz channels (frequencies are given in MHz)
5ghz-turbo-channels (multiple choice, read-only: 4920, 4925, 4930, 4935, 4940, 4945, 4950,
4955, 4960, 4965, 4970, 4975, 4980, 4985, 4990, 4995, 5000, 5005, 5010, 5015, 5020, 5025, 5030,
5035, 5040, 5045, 5050, 5055, 5060, 5065, 5070, 5075, 5080, 5085, 5090, 5095, 5100, 5105, 5110,
5115, 5120, 5125, 5130, 5135, 5140, 5145, 5150, 5155, 5160, 5165, 5170, 5175, 5180, 5185, 5190,
5195, 5200, 5205, 5210, 5215, 5220, 5225, 5230, 5235, 5240, 5245, 5250, 5255, 5260, 5265, 5270,
5275, 5280, 5285, 5290, 5295, 5300, 5305, 5310, 5315, 5320, 5325, 5330, 5335, 5340, 5345, 5350,
5355, 5360, 5365, 5370, 5375, 5380, 5385, 5390, 5395, 5400, 5405, 5410, 5415, 5420, 5425, 5430,
5435, 5440, 5445, 5450, 5455, 5460, 5465, 5470, 5475, 5480, 5485, 5490, 5495, 5500, 5505, 5510,
5515, 5520, 5525, 5530, 5535, 5540, 5545, 5550, 5555, 5560, 5565, 5570, 5575, 5580, 5585, 5590,
5595, 5600, 5605, 5610, 5615, 5620, 5625, 5630, 5635, 5640, 5645, 5650, 5655, 5660, 5665, 5670,
5675, 5680, 5685, 5690, 5695, 5700, 5705, 5710, 5715, 5720, 5725, 5730, 5735, 5740, 5745, 5750,
5755, 5760, 5765, 5770, 5775, 5780, 5785, 5790, 5795, 5800, 5805, 5810, 5815, 5820, 5825, 5830,
5835, 5840, 5845, 5850, 5855, 5860, 5865, 5870, 5875, 5880, 5885, 5890, 5895, 5900, 5905, 5910,
5915, 5920, 5925, 5930, 5935, 5940, 5945, 5950, 5955, 5960, 5965, 5970, 5975, 5980, 5985, 5990,
5995, 6000, 6005, 6010, 6015, 6020, 6025, 6030, 6035, 6040, 6045, 6050, 6055, 6060, 6065, 6070,
6075, 6080, 6085, 6090, 6095, 6100) - the list of 5ghz-turbo channels (frequencies are given in
MHz)
Page 220 of 521
Copyright 1999-2005, MikroTik. All rights reserved. Mikrotik, RouterOS and RouterBOARD are trademarks of Mikrotikls SIA.
Other trademarks and registred trademarks mentioned herein are properties of their respective owners.


ack-timeout-control (read-only: yes | no) - provides information whether this device supports transmission acceptance timeout control

alignment-mode (read-only: yes | no) - is the alignment-only mode supported by this interface

burst-support (yes | no) - whether the interface supports data bursts (burst-time)

firmware (read-only: text) - current firmware of the interface (used only for Prism chipset based cards)

interface-type (read-only: text) - shows the hardware interface type

noise-floor-control (read-only: yes | no) - does this interface support noise-floor-threshold detection

scan-support (yes | no) - whether the interface supports scan function ("/interface wireless scan")

supported-bands (multiple choice, read-only: 2ghz-b | 2ghz-g | 5ghz | 5ghz-turbo) - the list of supported bands

tx-power-control (read-only: yes | no) - provides information whether this device supports transmission power control

virtual-aps (read-only: yes | no) - whether this interface supports Virtual Access Points ("/interface wireless add")

Notes

There is a special argument for the print command - print count-only. It forces the print command to print only the count of information topics.

In RouterOS v2.8 and above /interface wireless info print command shows only channels supported by particular card. This behaviour differs from one in v2.7, where wireless info print command showed all channels, even those not supported by particular card.

Example

[admin@MikroTik] interface wireless info> print
0 interface-type=Atheros AR5212 tx-power-control=yes ack-timeout-control=yes
alignment-mode=yes virtual-aps=yes noise-floor-control=yes
scan-support=yes burst-support=yes nstreme-support=yes
supported-bands=2ghz-b, 2ghz-g, 2ghz-turbo, 2ghz-g
2ghz-b-channels=2312, 2317, 2322, 2327, 2332, 2337, 2342, 2347, 2332, 2357, 2362, 2367,
2372, 2377, 2417, 2422, 2427, 2432, 2437, 2442, 2447, 2452, 2457, 2462,
2467, 2472, 2512, 2522, 2527, 2532, 2537, 2542, 2547, 2552, 2557, 2562,
2567, 2572, 2577, 2582, 2587, 2592, 2597, 2602, 2607, 2612, 2617,
2622, 2627, 2632, 2637, 2642, 2647, 2652, 2657, 2662, 2667, 2672, 2677,
2682, 2687, 2692, 2702, 2707, 2712, 2717, 2722, 2727, 2732, 2737, 2742,
2747, 2752, 2757, 2762, 2767, 2772, 2777, 2782, 2787, 2792, 2797, 2802,
2807, 2812, 2817, 2822, 2827, 2832, 2837, 2842, 2847, 2852, 2857, 2862,
2867, 2872, 2877, 2882, 2887, 2892, 2897, 2902, 2907, 2912, 2917, 2922,
2927, 2932, 2937, 2942, 2947, 2952, 2957, 2962, 2967, 2972, 2977, 2982,
2987, 2992, 2997, 3002, 3007, 3012, 3017, 3022, 3027, 3032, 3037, 3042,
3047, 3052, 3057, 3062, 3067, 3072, 3077, 3082, 3087, 3092, 3097, 3102,
3107, 3112, 3117, 3122, 3127, 3132, 3137, 3142, 3147, 3152, 3157, 3162,
3167, 3172, 3177, 3182, 3187, 3192, 3197, 3202, 3207, 3212, 3217, 3222,
3227, 3232, 3237, 3242, 3247, 3252, 3257, 3262, 3267, 3272, 3277, 3282,
3287, 3292, 3297, 3302, 3307, 3312, 3317, 3322, 3327, 3332, 3337, 3342,
3347, 3352, 3357, 3362, 3367, 3372, 3377, 3382, 3387, 3392, 3397, 3402,
3407, 3412, 3417, 3422, 3427, 3432, 3437, 3442, 3447, 3452, 3457, 3462,
3467, 3472, 3477, 3482, 3487, 3492, 3497, 3502, 3507, 3512, 3517, 3522,
3527, 3532, 3537, 3542, 3547, 3552, 3557, 3562, 3567, 3572, 3577, 3582,
3587, 3592, 3597, 3602, 3607, 3612, 3617, 3622, 3627, 3632, 3637, 3642,
3647, 3652, 3657, 3662, 3667, 3672, 3677, 3682, 3687, 3692, 3697, 3702,
3707, 3712, 3717, 3722, 3727, 3732, 3737, 3742, 3747, 3752, 3757, 3762,
3767, 3772, 3777, 3782, 3787, 3792, 3797, 3802, 3807, 3812, 3817, 3822,
3827, 3832, 3837, 3842, 3847, 3852, 3857, 3862, 3867, 3872, 3877, 3882,
3887, 3892, 3897, 3902, 3907, 3912, 3917, 3922, 3927, 3932, 3937, 3942,
3947, 3952, 3957, 3962, 3967, 3972, 3977, 3982, 3987, 3992, 3997, 4002,
4007, 4012, 4017, 4022, 4027, 4032, 4037, 4042, 4047, 4052, 4057, 4062,
4067, 4072, 4077, 4082, 4087, 4092, 4097, 4102, 4107, 4112, 4117, 4122,
4127, 4132, 4137, 4142, 4147, 4152, 4157, 4162, 4167, 4172, 4177, 4182,
4187, 4192, 4197, 4202, 4207, 4212, 4217, 4222, 4227, 4232, 4237, 4242,
Virtual Access Point Interface

Home menu level: /interface wireless

Description

Virtual Access Point (VAP) interface is used to have an additional AP. You can create a new AP with different ssid. It can be compared with a VLAN where the ssid from VAP is the VLAN tag and the hardware interface is the VLAN switch.

Note that you cannot use the Virtual Access Point on Prism based cards!

Property Description

802.1x-mode (PEAP-MSCHAPV2 | none) - to use Protected Extensible Authentication Protocol Microsoft Challenge Handshake Authentication Protocol version 2 for authentication

arp (disabled | enabled | proxy-arp | reply-only) - ARP mode

default-authentication (yes | no ; default: yes) - whether to accept or reject a client that wants to associate, but is not in the access-list

default-forwarding (yes | no ; default: yes) - whether to forward frames to other AP clients or not

disabled (yes | no ; default: yes) - whether to disable the interface or not

disable-running-check (yes | no ; default: no) - disable running check. For 'broken' cards it is a good idea to set this value to 'yes'

hide-ssid (yes | no ; default: no) - whether to hide ssid or not in the beacon frames:
 • yes - ssid is not included in the beacon frames. AP replies only to probe-requests with the given ssid
 • no - ssid is included in beacon frames. AP replies to probe-requests with the given ssid and to
'broadcast ssid'

mac-address *(read-only; MAC address; default: 00:00:00:00:00:00)* - MAC address of VAP. Is assigned automatically when the field master interface is set

master-interface *(name)* - hardware interface to use for VAP

max-station-count *(integer; default: 2007)* - number of clients that can connect to this AP simultaneously

mtu *(integer; 68 .. 1600; default: 1500)* - Maximum Transmission Unit

name *(name; default: wlanN)* - interface name

ssid *(text; default: MikroTik)* - the service set identifier

Notes

You can create a VAP only in the same frequency an the same band as specified in the master-interface

Example

Add a VAP:

```
/interface wireless add master-interface=wlan1 ssid=VAP1 disabled=no
[admin@MikroTik] interface wireless> print
Flags: X - disabled, R - running
0 R name="wlan1" mtu=1500 mac-address=00:0B:6B:31:02:4B arp-enabled
disable-running-check=no interface-type=Atheros AR5212
radio-name="AP_172" mode=ap-bridge ssid="wtest" frequency=5805
band=5ghz scan-list=default-ism rate-set=default
 supported-rates-b=1Mbps,2Mbps,5.5Mbps,11Mbps
 supported-rates-a/g=6Mbps,9Mbps,12Mbps,18Mbps,24Mbps,36Mbps,48Mbps,
54Mbps
 basic-rates-b=1Mbps basic-rates-a/g=6Mbps max-station-count=2007
 ack-timeout(dynamic tx-power=default noise-floor-threshold=default
 burst-time=disabled fast-frame=no dfs-mode=none antenna-mode=ant-a
 wds-mode=disabled wds-default-bridge=none wds-ignore-ssid=no
 update-stats-interval=disabled default-authentication=yes
default-forwarding=yes hide-ssid=no 802.1x-mode=none
1 name="wlan2" mtu=1500 mac-address=00:0B:6B:31:02:4B arp-enabled
disable-running-check=no interface-type=virtual-AP
master-interface=wlan1 ssid="VAP1" max-station-count=2007
default-authentication=yes default-forwarding=yes hide-ssid=no
802.1x-mode=none
[admin@MikroTik] interface wireless>
```

Now you can connect cliets to 8AP with **ssid=VAP1**

WDS Interface Configuration

Home menu level: `/interface wireless wds`

Description

WDS (Wireless Distribution System) allows packets to pass from one wireless AP (Access Point) to another, just as if the APs were ports on a wired Ethernet switch. APs must use the same standard (802.11a, 802.11b or 802.11g) and work on the same frequencies in order to connect to each other.

There are two possibilities to create a WDS interface:
• **dynamic** - is created 'on the fly' and appers under wds menu as a dynamic interface
• **static** - is created manually

Property Description

arp (disabled | enabled | proxy-arp | reply-only ; default: enabled) - Address Resolution Protocol
- **disabled** - the interface will not use ARP
- **enabled** - the interface will use ARP
- **proxy-arp** - the interface will use the ARP proxy feature
- **reply-only** - the interface will only reply to the requests originated to its own IP addresses. Neighbour MAC addresses will be resolved using /ip arp statically set table only

disable-running-check (yes | no ; default: no) - disable running check. For 'broken' wireless cards it is a good idea to set this value to 'yes'

mac-address (MAC address ; default: 00:00:00:00:00:00) - MAC address of the master-interface. Specifying master-interface, this value will be set automatically

master-interface (name) - wireless interface which will be used by WDS

mtu (integer : 0 ..65336 ; default: 1500) - Maximum Transmission Unit

name (name ; default: wdsN) - WDS interface name

wds-address (MAC address) - MAC address of the remote WDS host

Notes

When the link between WDS devices, using wds-mode=dynamic, goes down, the dynamic WDS interfaces disappear and if there are any IP addresses set on this interface, their 'interface' setting will change to (unknown). When the link comes up again, the 'interface' value will not change - it will remain as (unknown). That's why it is not recommended to add IP addresses to dynamic WDS interfaces.

If you want to use dynamic WDS in a bridge, set the wds-default-bridge value to desired bridge interface name. When the link will go down and then it comes up, the dynamic WDS interface will be put in the specified bridge automatically.

As the routers which are in WDS mode have to communicate at equal frequencies, it is not recommended to use WDS and DFS simultaneously - it is most probable that these routers will not connect to each other.

WDS can not be used on Nstreme-dual links.

Example

```bash
[admin@MikroTik] interface wireless wds> add master-interface=wlan1 \\
... wds-address=00:0B:6B:30:2B:27 disabled=no
[admin@MikroTik] interface wireless wds> print
Flags: X - disabled, R - running, D - dynamic
  0 R name="wds1" mtu=1500 mac-address=00:0B:6B:30:2B:23 arp=enabled
disable-running-check=no master-interface=wlan1
  wds-address=00:0B:6B:30:2B:27
[admin@MikroTik] interface wireless wds>
```
Align

Home menu level: /interface wireless align

Description

This feature is created to position wireless links. The align submenu describes properties which are used if /interface wireless mode is set to alignment-only. In this mode the interface 'listens' to those packets which are sent to it from other devices working on the same channel. The interface also can send special packets which contains information about its parameters.

Property Description

active-mode (yes | no; default: yes) - whether the interface will receive and transmit 'alignment' packets or it will only receive them

audio-max (integer; default: 64) - signal-strength at which audio (beeper) frequency will be the highest

audio-min (integer; default: 0) - signal-strength at which audio (beeper) frequency will be the lowest

audio-monitor (MAC address; default: 00:00:00:00:00:00) - MAC address of the remote host which will be 'listened'

filter-mac (MAC address; default: 00:00:00:00:00:00) - in case if you want to receive packets from only one remote host, you should specify here its MAC address

frame-size (integer: 200 ..1500; default: 300) - size of 'alignment' packets that will be transmitted

frames-per-second (integer: 1 ..100; default: 25) - number of frames that will be sent per second (in active-mode)

receive-all (yes | no; default: no) - whether the interface gathers packets about other 802.11 standard packets or it will gather only 'alignment' packets

ssid-all (yes | no; default: no) - whether you want to accept packets from hosts with other ssid than yours

test-audio (integer) - test the beeper for 10 seconds

Notes

If you are using the command /interface wireless align monitor then it will automatically change the wireless interface's mode from station, bridge or ap-bridge to alignment-only.

Example

```
[admin@MikroTik] interface wireless align> print
  frame-size: 300
  active-mode: yes
  receive-all: yes
  audio-monitor: 00:00:00:00:00:00
  filter-mac: 00:00:00:00:00:00
  ssid-all: no
  frames-per-second: 25
```
Align Monitor

Command name: /interface wireless align monitor

Description

This command is used to monitor current signal parameters to/from a remote host.

Property Description

address (read-only: MAC address) - MAC address of the remote host
avg-rxq (read-only: integer) - average signal strength of received packets since last display update on screen
correct (read-only: percentage) - how many undamaged packets were received
last-rx (read-only: time) - time in seconds before the last packet was received
last-tx (read-only: time) - time in seconds when the last TXQ info was received
rxq (read-only: integer) - signal strength of last received packet
ssid (read-only: text) - service set identifier
taxq (read-only: integer) - the last received signal strength from our host to the remote one

Example

[admin@MikroTik] interface wireless align> monitor wlan2
ADDRESS SSID RXQ AVG-RXQ LAST-RX TXQ LAST-TX CORRECT
0 00:01:24:70:4B:FC wirelesa -60 -60 0.01 -67 0.01 100 %

Network Scan

Description

This is a feature that allows you to scan all available wireless networks. While scanning, the card unregisters itself from the access point (in station mode), or unregisters all clients (in bridge or ap-bridge mode). Thus, network connections are lost while scanning.

Property Description

(name) - interface name to use for scanning
address (read-only: MAC address) - MAC address of the AP
band (read-only: text) - in which standard does the AP operate
bss (read-only: yes | no) - basic service set
freq (read-only: integer) - the frequency of AP
privacy (read-only: yes | no) - whether all data is encrypted or not

refresh-interval (time; default: 1s) - time in seconds to refresh the displayed data

signal-strength (read-only: integer) - signal strength in dBm

ssid (read-only: text) - service set identifier of the AP

Example

```bash
[admin@MikroTik] interface wireless> scan wlan1 refresh-interval=1s
# ADDRESS SSID BAND FREQ BSS PRIVACY SIGNAL-STRENGTH
0 00:02:6F:01:69:FA wep2 2.4GHz-B 2412 yes no -59
0 00:02:6F:20:28:E6 r 2.4GHz-B 2422 yes no -79
0 00:40:96:44:2E:16 2.4GHz-B 2442 yes no -95
0 00:02:6F:08:53:1F rbinstall 2.4GHz-B 2457 yes no -93
```

Wireless Security

Description

This section provides the WEP (Wired Equivalent Privacy) functions to wireless interfaces.

Note that Prism card doesn't report that the use of WEP is required for all data type frames, which means that some clients will not see that access point uses encryption and will not be able to connect to such AP. This is a Prism hardware problem and can not be fixed. Use Atheros-based cards (instead of Prism) on APs if you want to provide WEP in your wireless network.

Property Description

algo-0 (40bit-wep | 104bit-wep | aes-ccm | none; default: none) - which encryption algorithm to use:

- **40bit-wep** - use the 40bit encryption (also known as 64bit-wep) and accept only these packets
- **104bit-wep** - use the 104bit encryption (also known as 128bit-wep) and accept only these packets
- **aes-ccm** - use the AES (Advanced Encryption Standard) with CCM (Counter with CBC-MAC) encryption and accept only these packets
- **none** - do not use encryption and do not accept encrypted packets

algo-1 (40bit-wep | 104bit-wep | aes-ccm | none; default: none) - which encryption algorithm to use:

- **40bit-wep** - use the 40bit encryption (also known as 64bit-wep) and accept only these packets
- **104bit-wep** - use the 104bit encryption (also known as 128bit-wep) and accept only these packets
- **aes-ccm** - use the AES (Advanced Encryption Standard) with CCM (Counter with CBC-MAC) encryption and accept only these packets
- **none** - do not use encryption and do not accept encrypted packets

algo-2 (40bit-wep | 104bit-wep | aes-ccm | none; default: none) - which encryption algorithm to use:
• **40bit-wep** - use the 40bit encryption (also known as 64bit-wep) and accept only these packets
• **104bit-wep** - use the 104bit encryption (also known as 128bit-wep) and accept only these packets
• **aes-ccm** - use the AES (Advanced Encryption Standard) with CCM (Counter with CBC-MAC) encryption and accept only these packets
• **none** - do not use encryption and do not accept encrypted packets

algo-3 (40bit-wep | 104bit-wep | aes-ccm | none ; default: none) - which encryption algorithm to use:
 • **40bit-wep** - use the 40bit encryption (also known as 64bit-wep) and accept only these packets
 • **104bit-wep** - use the 104bit encryption (also known as 128bit-wep) and accept only these packets
 • **aes-ccm** - use the AES (Advanced Encryption Standard) with CCM (Counter with CBC-MAC) encryption and accept only these packets
 • **none** - do not use encryption and do not accept encrypted packets

key-0 (text) - hexadecimal key which will be used to encrypt packets with the 40bit-wep, 104bit-wep or aes-ccm algorithm (algo-0)
key-1 (text) - hexadecimal key which will be used to encrypt packets with the 40bit-wep, 104bit-wep or aes-ccm algorithm (algo-0)
key-2 (text) - hexadecimal key which will be used to encrypt packets with the 40bit-wep, 104bit-wep or aes-ccm algorithm (algo-0)
key-3 (text) - hexadecimal key which will be used to encrypt packets with the 40bit-wep, 104bit-wep or aes-ccm algorithm (algo-0)

radius-mac-authentication (no | yes ; default: no) - whether to use Radius server MAC authentication

security (none | optional | required ; default: none) - security level:
 • **none** - do not encrypt packets and do not accept encrypted packets
 • **optional** - if there is a sta-private-key set, use it. Otherwise, if the ap-bridge mode is set - do not use encryption, if the mode is station, use encryption if the transmit-key is set
 • **required** - encrypt all packets and accept only encrypted packets

sta-private-algo (40bit-wep | 104bit-wep | aes-ccm | none) - algorithm to use if the sta-private-key is set. Used to communicate between 2 devices

sta-private-key (text) - if this key is set in station mode, use this key for encryption. In ap-bridge mode you have to specify private keys in the access-list or use the Radius server using radius-mac-authentication. Used to communicate between 2 devices

transmit-key (key-0 | key-1 | key-2 | key-3 ; default: key-0) - which key to use for broadcast packets. Used in AP mode

Notes

The keys used for encryption are in hexadecimal form. If you use **40bit-wep**, the key has to be 10 characters long, if you use **104bit-wep**, the key has to be 26 characters long, **aes-ccm** key should contain 32 hexadecimal characters.
Wireless Application Examples

AP to Client Configuration Example

You need Level5 license to enable the AP mode. To make the MikroTik router to work as an access point, the configuration of the wireless interface should be as follows:

- A unique Service Set Identifier should be chosen, say "test1"
- A frequency should be selected for the link, say 5180MHz
- The operation mode should be set to `ap-bridge`

The following command should be issued to change the settings for the wireless AP interface:

```
[admin@AP] interface wireless> set 0 mode=ap-bridge ssid=test1 ...
\... disabled=no frequency=5180 band=5GHz
```

```
[admin@AP] interface wireless> print
Flags: X - disabled, R - running
  0 name="wlan1" mtu=1500 mac-address=00:0B:6B:31:01:6A arp=enabled
disable-running-check=no interface-type=Atheros AR5212 mode=ap-bridge
ssid="test1" frequency=5180 band=5GHz scan-list=default-ism
supported-rates-b=1Mbps,2Mbps,5.5Mbps,11Mbps
supported-rates-a/g=6Mbps,9Mbps,12Mbps,18Mbps,24Mbps,36Mbps,48Mbps,54Mbps
basic-rates-b=1Mbps basic-rates-a/g=6Mbps max-station-count=2007
ack-timeout=dynamic tx-power=default noise-floor-threshold=default
burst-time=disabled fast-frame=disabled ant-a=disabled mode=ap-bridge
default-bridge=none default-authentication=yes
default-forwarding=yes hide-ssid=no 802.1x-mode=none
[admin@AP] interface wireless>
```

Then we need to configure the wireless client interface:

```
[admin@MikroTik] interface wireless> set 0 mode=station ssid=test1 ...
\... disabled=no
```

```
[admin@Client] interface wireless> print
Flags: X - disabled, R - running
  0 R name="wlan2" mtu=1500 mac-address=00:0B:6B:30:79:02 arp=enabled
disable-running-check=no interface-type=Atheros AR5212 mode=station
ssid="test1" frequency=5180 band=5GHz scan-list=default-ism
supported-rates-b=1Mbps,2Mbps,5.5Mbps,11Mbps
supported-rates-a/g=6Mbps,9Mbps,12Mbps,18Mbps,24Mbps,36Mbps,48Mbps,54Mbps
basic-rates-b=1Mbps basic-rates-a/g=6Mbps max-station-count=2007
ack-timeout=dynamic tx-power=default noise-floor-threshold=default
burst-time=disabled fast-frame=disabled ant-a=disabled mode=ap-bridge
default-bridge=none default-authentication=yes
default-forwarding=yes hide-ssid=no 802.1x-mode=none
[admin@Client] interface wireless>
```

Now we can monitor our connection from the AP:

```
[admin@AP] interface wireless> monitor 0
status: running-ap
registered-clients: 1
  current-ack-timeout: 28
  current-distance: 28
```

```
[admin@AP] interface wireless>
```

... and from the client:

```
[admin@Client] interface wireless> monitor 0
status: connected-to-ess
```
WDS Configuration Example

WDS (Wireless Distribution System) makes it able to connect APs to each other with the same ssid and share the same network. On one physical wireless interface you can create multiple WDS interfaces which will connect to other APs.

This is just a simple example how to get a connection between APs using WDS. Afterwards you can bridge it with the wireless and/or ethernet interface.

Let us consider the following example:

Router Home
- ssid = wds-test
- IP Address = 192.168.0.2
- Network Mask = 255.255.255.0

Router Neighbour
- ssid = wds-test
- IP Address = 192.168.0.1
- Network Mask = 255.255.255.0

Router Home configuration.

At first we should configure the wireless interface for router Home:

```
[admin@Home] interface wireless> set wlan1 mode=ap-bridge ssid=wds-test \ 
... wds-mode=static disabled=no
```

```
[admin@Home] interface wireless> print
```

```
Flags: X - disabled, R - running
0 name="wlan1" mtu=1500 mac-address=00:01:24:70:3A:83 arp=enabled 

disable-running-check=no interface-type=Atheros AR5211 mode=ap-bridge 

ssid="wds-test" frequency=5120 band=5GHz scan-list=default-ism 
supported-rates-a/g=6Mbps,9Mbps,12Mbps,18Mbps,24Mbps,36Mbps,48Mbps, 
54Mbps 

basic-rates-a/g=6Mbps supported-rates-b=1Mbps,2Mbp,5.5Mbps,11Mbps 

basic-rates-b=1Mbps max-station-count=2007 ack-timeout=default 

tx-power=default noise-floor-threshold=default wds-mode=static 

wds-default-bridge=none default-authentication=yes 

default-forwarding=yes hide-ssid=no 802.1x-mode=none
```

```
[admin@Home] interface wireless>
```

We should add and configure a WDS interface. Note that the value of wds-address is the remote wds host’s wireless interface MAC address (to which we will connect to):

```
[admin@Home] interface wireless> add wds-address=00:01:24:70:3B:AE \ 
... master-interface=wlan1 disabled=no
```

Copyright 1999-2005, MikroTik. All rights reserved. Mikrotik, RouterOS and RouterBOARD are trademarks of Mikrotikls SIA. Other trademarks and registered trademarks mentioned herein are properties of their respective owners.
Add the IP address to the WDS interface:

```
[admin@Home] ip address> add address=192.168.25.2/24 interface=wds1
[admin@Home] ip address> print
Flags: X - disabled, I - invalid, D - dynamic
# ADDRESS  NETWORK  BROADCAST  INTERFACE
  0 192.168.25.2/24  192.168.25.0  192.168.25.255  wds1
```

Router Neighbour configuration.

At first we should configure the wireless interface for router Neighbour:

```
[admin@Neighbour] interface wireless> set wlan1 mode=ap-bridge ssid=wds-test \ ...
  wds-mode=static disabled=no
[admin@Neighbour] interface wireless> print
Flags: X - disabled, R - running
  0 R name="wlan1" mtu=1500 mac-address=00:01:24:70:3B:AE arp=enabled
  disable-running-check=no interface-type=Atheros AR5211
  mode=ap-bridge ssid="wds-test" frequency=5120
  band=5GHz scan-list=default-ism
  supported-rates-a/g=6Mbps,9Mbps,12Mbps,18Mbps,24Mbps,36Mbps,48Mbps,
  54Mbps basic-rates-a/g=6Mbps supported-rates-b=1Mbps,2Mbps,5.5Mbps,11Mbps
  basic-rates-b=1Mbps max-station-count=2007 ack-timeout=default
  tx-power=default noise-floor-threshold=default
  wds-default-bridge=none default-authentication=yes
  default-forwarding=yes hide-ssid=no 802.1x-mode=none
```

Now the WDS interface configuration:

```
[admin@Neighbour] interface wireless wds> add wds-address=00:01:24:70:3A:83 \ ...
  master-interface=wlan1 disabled=no
```

Add the IP address:

```
[admin@Neighbour] ip address> add address=192.168.25.1/24 interface=wds1
[admin@Neighbour] ip address> print
Flags: X - disabled, I - invalid, D - dynamic
# ADDRESS  NETWORK  BROADCAST  INTERFACE
  0 192.168.25.1/24  192.168.25.0  192.168.25.255  wds1
```

And now you can check whether the WDS link works:

```
[admin@Neighbour] ip address> /ping 192.168.25.2
192.168.25.2 64 byte ping: ttl=64 time=6 ms
192.168.25.2 64 byte ping: ttl=64 time=4 ms
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 4/4.4/6 ms
[admin@Neighbour] ip address>
```
Wireless Security Example

Let us consider that we want to secure all data for all wireless clients that are connecting to our AP.

At first, add addresses to the wireless interfaces.

On the AP:

```
[admin@AP] ip address> add address=192.168.1.1/24 interface=wlan1
[admin@AP] ip address> print
Flags: X - disabled, I - invalid, D - dynamic
  # ADDRESS     NETWORK    BROADCAST   INTERFACE
  0 192.168.1.1/24 192.168.1.0 192.168.1.255 wlan1
[admin@AP] ip address>
```

And on the client:

```
[admin@Client] ip address> add address=192.168.1.2/24 interface=wlan1
[admin@AP] ip address> print
Flags: X - disabled, I - invalid, D - dynamic
  # ADDRESS     NETWORK    BROADCAST   INTERFACE
  0 192.168.1.2/24 192.168.1.0 192.168.1.255 wlan1
[admin@Client] ip address>
```

On the AP set the security to **required** and choose which encryption algorithm to use:

```
[admin@AP] interface wireless security> set 0 security=required \...
  algo-1=40bit-wep key-1=0123456789 transmit-key=key-1
[admin@AP] interface wireless security> print
  0 name="wlan1" security=required algo-0=none key-0="" algo-1=40bit-wep key-1="0123456789" algo-2=none key-2="" algo-3=none key-3="" transmit-key=key-1 sta-private-algo=none sta-private-key="" radius-mac-authentication=no
[admin@AP] interface wireless security>
```

On the client side do the same:

```
[admin@Client] interface wireless security> set 0 security=required \...
  algo-1=40bit-wep key-1=0123456789 transmit-key=key-1
[admin@AP] interface wireless security> print
  0 name="wlan1" security=required algo-0=none key-0="" algo-1=40bit-wep key-1="0123456789" algo-2=none key-2="" algo-3=none key-3="" transmit-key=key-1 sta-private-algo=none sta-private-key="" radius-mac-authentication=no
[admin@Client] interface wireless security>
```

Finally, test the link:

```
[admin@Client] interface wireless security> /ping 192.168.1.1
192.168.1.1 64 byte ping: ttl=64 time=16 ms
192.168.1.1 64 byte ping: ttl=64 time=16 ms
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 15/17.6/22 ms
[admin@Client] interface wireless security>
```

Troubleshooting

Description

- **If I use WDS and DFS, the routers do not connect to each other!**
 As the WDS routers must operate at the same frequency, it is very probable that DFS will not
select the frequency that is used by the peer router.

- **MikroTik RouterOS does not send any traffic through Cisco Wireless Access Point or Wireless Bridge**
 If you use CISCO/Aironet Wireless Ethernet Bridge or Access Point, you should set the Configuration/Radio/I80211/Extended (Allow proprietary extensions) to **off**, and the Configuration/Radio/I80211/Extended/Encapsulation (Default encapsulation method) to **RFC1042**. If left to the default **on** and **802.1H**, respectively, you won't be able to pass traffic through the bridge.
Xpeed SDSL Interface

Document revision 1.1 (Fri Mar 05 08:18:04 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
General Information
 Summary
 Specifications
 Related Documents
Xpeed Interface Configuration
 Property Description
 Example
Frame Relay Configuration Examples
 MikroTik Router to MikroTik Router
 MikroTik Router to Cisco Router
Troubleshooting
 Description

General Information

Summary

The MikroTik RouterOS supports the Xpeed 300 SDSL PCI Adapter hardware with speeds up to 2.32Mbps. This device can operate either using Frame Relay or PPP type of connection. SDSL (Single-line Digital Subscriber Line or Symmetric Digital Subscriber Line) stands for the type of DSL that uses only one of the two cable pairs for transmission. SDSL allows residential or small office users to share the same telephone for data transmission and voice or fax telephony.

Specifications

Packages required: synchronous
License required: level4
Home menu level: /interface xpeed
Standards and Technologies: PPP (RFC 1661), Frame Relay (RFC 1490)
Hardware usage: Not significant

Related Documents

- Package Management
- Device Driver List
- IP Addresses and ARP
- Xpeed SDSL Interface
Additional Documents

- Xpeed homepage

Xpeed Interface Configuration

Home menu level: /interface xpeed

Property Description

name (name) - interface name

mtu (integer; default: 1500) - Maximum Transmission Unit

mac-address (MAC address) - MAC address of the card

arp (disabled|enabled|proxy-arp|reply-only; default: enabled) - Address Resolution Protocol
 • disabled - the interface will not use ARP protocol
 • enabled - the interface will use ARP protocol
 • proxy-arp - the interface will be an ARP proxy
 • reply-only - the interface will only reply to the requests originated to its own IP addresses, but neighbor MAC addresses will be gathered from /ip arp statically set table only

mode (network-termination|line-termination; default: line-termination) - interface mode, either line termination (LT) or network termination (NT)

sdsl-speed (integer; default: 2320) - SDSL connection speed

sdsl-invert (yes|no; default: no) - whether the clock is phase inverted with respect to the Transmitted Data interchange circuit. This configuration option is useful when long cable lengths between the Termination Unit and the DTE are causing data errors

sdsl-swap (yes|no; default: no) - whether or not the Xpeed 300 SDSL Adapter performs bit swapping. Bit swapping can maximize error performance by attempting to maintain an acceptable margin for each bin by equalizing the margin across all bins through bit reallocation

bridged-ethernet (yes|no; default: yes) - if the adapter operates in bridged Ethernet mode

dlci (integer; default: 16) - defines the DLCI to be used for the local interface. The DLCI field identifies which logical circuit the data travels over

lmi-mode (off|line-termination|network-termination|network-termination-bidirectional; default: off) - defines how the card will perform LMI protocol negotiation
 • off - no LMI will be used
 • line-termination - LMI will operate in LT (Line Termination) mode
 • network-termination - LMI will operate in NT (Network Termination) mode
 • network-termination-bidirectional - LMI will operate in bidirectional NT mode

cr (0|2; default: 0) - a special mask value to be used when speaking with certain buggy vendor equipment. Can be 0 or 2

Example

To enable interface:
Frame Relay Configuration Examples

MikroTik Router to MikroTik Router

Consider the following network setup with MikroTik router connected via SDSL line using Xpeed interface to another MikroTik router with Xpeed 300 SDSL adapter. SDSL line can refer a common patch cable included with the Xpeed 300 SDSL adapter (such a connection is called Back-to-Back). Lets name the first router \textbf{r1} and the second \textbf{r2}.

Router \textbf{r1} setup

The following setup is identical to one in the first example:

```
[admin@r1] ip address> add inter=xpeed1 address 1.1.1.1/24
[admin@r1] ip address> pri
Flags: X - disabled, I - invalid, D - dynamic
#   ADDRESS   NETWORK   BROADCAST   INTERFACE
 0  1.1.1.1/24  1.1.1.0    1.1.1.255   xpeed1
```

Router \textbf{r2} setup

First, we need to add a suitable IP address:

```
[admin@r2] ip address> add inter=xpeed1 address 1.1.1.2/24
[admin@r2] ip address> pri
Flags: X - disabled, I - invalid, D - dynamic
#   ADDRESS   NETWORK   BROADCAST   INTERFACE
 0  1.1.1.2/24  1.1.1.0    1.1.1.255   xpeed1
```

Then, some changes in \textbf{xpeed} interface configuration should be done:

```
[admin@r2] interface xpeed> print
Flags: X - disabled
 0  name="xpeed1"  mtu=1500  mac-address=00:05:7A:00:00:08  arp-enabled
    mode=network-termination  sdl1-speed=2320  sdl1-invert=no  sdl1-swap=no
    bridged-ethernet=yes  dci=16  lmi-mode=off  cr=0
```

Now \textbf{r1} and \textbf{r2} can ping each other.
MikroTik Router to Cisco Router

Let us consider the following network setup with MikroTik Router with Xpeed interface connected to a leased line with a CISCO router at the other end.

MikroTik router setup:

```
[admin@r1] ip address> add inter=xpeed1 address 1.1.1.1/24
Flags: X - disabled, I - invalid, D - dynamic
# ADDR   NET   BCAST    INT
 0 1.1.1.1/24 1.1.1.0 1.1.1.255 xpeed1

[admin@r1] interface xpeed> print
Flags: X - disabled
 0 name="xpeed1" mtu=1500 mac-address=00:05:7A:00:00:08 arp=enabled
    mode=network-termination sdsl-speed=2320 sdsl-invert=no sdsl-swap=no
    bridged-ethernet=yes dlci=42 lmi-mode=off cr=0
```

Cisco router setup

```
CISCO# show running-config
Building configuration...
Current configuration...
...
  ip subnet-zero
  no ip domain-lookup
  frame-relay switching
  interface Ethernet0
    description connected to EthernetLAN
    ip address 10.0.0.254 255.255.255.0
  !
  interface Serial0
    description connected to Internet
    no ip address
    encapsulation frame-relay IETF
    serial restart-delay 1
    frame-relay imi-type ansi
    frame-relay intf-type dce
  !
  interface Serial0.1 point-to-point
    ip address 1.1.1.2 255.255.255.0
    no arp frame-relay
    frame-relay interface-dlci 42
  !
  ...
end.
```

Send ping to MikroTik router

```
CISCO#ping 1.1.1.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 1.1.1.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 28/31/32 ms
CISCO#
```

Troubleshooting

Description
• **I tried to connect two routers as shown in MT-to-MT, but nothing happens**
 The link indicators on both cards must be on. If it's not, check the cable or interface configuration. One adapter should use LT mode and the other NT mode. You can also change `sdsl-swap` and `sdsl-invert` parameters on the router running LT mode if you have a very long line.
EoIP Tunnel Interface

Document revision 1.3 (Tue Mar 09 08:15:37 GMT 2004)

This document applies to MikroTik RouterOS V2.8

Table of Contents

- Table of Contents
- General Information
 - Summary
 - Quick Setup Guide
 - Specifications
 - Related Documents
 - Description
- EoIP Setup
 - Property Description
 - Notes
 - Example
- EoIP Application: Example
 - Description
 - Example
- Troubleshooting
 - Description

General Information

Summary

Ethernet over IP (EoIP) Tunneling is a MikroTik RouterOS protocol that creates an Ethernet tunnel between two routers on top of an IP connection. The EoIP interface appears as an Ethernet interface. When the bridging function of the router is enabled, all Ethernet traffic (all Ethernet protocols) will be bridged just as if there were a physical Ethernet interface and cable between the two routers (with bridging enabled). This protocol makes multiple network schemes possible.

Network setups with EoIP interfaces:

- Possibility to bridge LANs over the Internet
- Possibility to bridge LANs over encrypted tunnels
- Possibility to bridge LANs over 802.11b 'ad-hoc' wireless networks

Quick Setup Guide

To make an EoIP tunnel between 2 routers which have IP addresses **10.5.8.1** and **10.1.0.1**:

1. On router with IP address **10.5.8.1**, add an EoIP interface and set its MAC address:

```
/interface eoip add remote-address=10.1.0.1 tunnel-id=1 mac-address=00-00-5E-80-00-01 \ 
... disabled=no
```
2. On router with IP address 10.1.0.1, add an EoIP interface and set its MAC address:

```
/interface eoip add remote-address=10.5.8.1 tunnel-id=1 mac-address=00-00-5E-80-00-02 \
... disabled=no
```

Now you can add IP addresses to the created EoIP interfaces from the same subnet.

Specifications

Packages required: system
License required: level1 (limited to 1 tunnel), level3
Home menu level: /interface eoip
Standards and Technologies: GRE (RFC1701)
Hardware usage: Not significant

Related Documents

- Package Management
- IP Addresses and ARP
- Bridge Interfaces
- PPTP Interface

Description

An EoIP interface should be configured on two routers that have the possibility for an IP level connection. The EoIP tunnel may run over an IPIP tunnel, a PPTP 128bit encrypted tunnel, a PPPoE connection, or any connection that transports IP.

Specific Properties:

- Each EoIP tunnel interface can connect with one remote router which has a corresponding interface configured with the same 'Tunnel ID'.
- The EoIP interface appears as an Ethernet interface under the interface list.
- This interface supports all features of an Ethernet interface. IP addresses and other tunnels may be run over the interface.
- The EoIP protocol encapsulates Ethernet frames in GRE (IP protocol number 47) packets (just like PPTP) and sends them to the remote side of the EoIP tunnel.
- Maximal count of EoIP tunnels is 65536.

EoIP Setup

Home menu level: /interface eoip

Property Description

- `name` (name : default: eoip-tunnelN) - interface name for reference
- `mtu` (integer : default: 1500) - Maximum Transmission Unit. The default value provides maximal compatibility
arp (disabled | enabled | proxy-arp | reply-only ; default: enabled) - Address Resolution Protocol

tunnel-id (integer) - a unique tunnel identifier

remote-address - the IP address of the other side of the EoIP tunnel - must be a MikroTik router

mac-address (MAC address) - MAC address of the EoIP interface. You can freely use MAC addresses that are in the range from 00-00-5E-80-00-00 to 00-00-5E-FF-FF-FF

Notes

tunnel-id is method of identifying tunnel. There should not be tunnels with the same tunnel-id on the same router. tunnel-id on both participant routers must be equal.

mtu should be set to 1500 to eliminate packet refragmentation inside the tunnel (that allows transparent bridging of Ethernet-like networks, so that it would be possible to transport full-sized Ethernet frame over the tunnel).

For EoIP interfaces you can use MAC addresses that are in the range from 00-00-5E-80-00-00 to 00-00-5E-FF-FF-FF.

Never bridge EoIP interface with the Ethernet interface the tunnel is running through.

Example

To add and enable an EoIP tunnel named to_mt2 to the 10.5.8.1 router, specifying tunnel-id of 1:

```
[admin@MikroTik] interface eoip> add name=to_mt2 remote-address=10.5.8.1 \ 
  tunnel-id 1
[admin@MikroTik] interface eoip> print
  Flags: X - disabled, R - running
  0 X name="to_mt2" mtu=1500 arp=enabled remote-address=10.5.8.1 tunnel-id=1

[admin@MikroTik] interface eoip> enable 0
[admin@MikroTik] interface eoip> print
  Flags: X - disabled, R - running
  0 R name="to_mt2" mtu=1500 arp=enabled remote-address=10.5.8.1 tunnel-id=1

[admin@MikroTik] interface eoip>
```

EoIP Application Example

Description

Let us assume we want to bridge two networks: 'Office LAN' and 'Remote LAN'. The networks are connected to an IP network through the routers [Our_GW] and [Remote]. The IP network can be a private intranet or the Internet. Both routers can communicate with each other through the IP network.

Example

Our goal is to create a secure channel between the routers and bridge both networks through it. The network setup diagram is as follows:

To make a secure Ethernet bridge between two routers you should:
1. Create a PPTP tunnel between them. Our_GW will be the pptp server:

```
[admin@Our_GW] interface pptp-server> /ppp secret add name=joe service=pptp
\... password=top_s3 local-address=10.0.0.1 remote-address=10.0.0.2
[admin@Our_GW] interface pptp-server> add name=from_remote user=joe
[admin@Our_GW] interface pptp-server> server set enable=yes
[admin@Our_GW] interface pptp-server> print
Flags: X - disabled, D - dynamic, R - running
#   NAME     USER     MTU   CLIENT-ADDRESS   UPTIME  ENC...
 0  from_remote  joe
```

The Remote router will be the pptp client:

```
[admin@Remote] interface pptp-client> add name=pptp user=joe
\... connect-to=192.168.1.1 password=top_s3 mtu=1500 mru=1500
[admin@Remote] interface pptp-client> enable pptp
[admin@Remote] interface pptp-client> print
Flags: X - disabled, R - running
 0  R  name="pptp" mtu=1500 mru=1500 connect-to=192.168.1.1 user="joe"
     password="top_s2" profile=default add-default-route=no
```

See the PPTP Interface Manual for more details on setting up encrypted channels.

2. Configure the EoIP tunnel by adding the eoip tunnel interfaces at both routers. Use the ip addresses of the pptp tunnel interfaces when specifying the argument values for the EoIP tunnel:

```
[admin@Our_GW] interface eoip> add name="eoip-remote" tunnel-id=0
\... remote-address=10.0.0.2
[admin@Our_GW] interface eoip> enable eoip-remote
[admin@Our_GW] interface eoip> print
Flags: X - disabled, R - running
  0  name=eoip-remote mtu=1500 arp=enabled remote-address=10.0.0.2 tunnel-id=0
[admin@Our_GW] interface eoip>
[admin@Remote] interface eoip> add name="eoip" tunnel-id=0
\... remote-address=10.0.0.1
[admin@Remote] interface eoip> enable eoip-main
[admin@Remote] interface eoip> print
Flags: X - disabled, R - running
  0  name=eoip mtu=1500 arp=enabled remote-address=10.0.0.1 tunnel-id=0
```

3. Enable bridging between the EoIP and Ethernet interfaces on both routers.

On the Our_GW:

```
[admin@Our_GW] interface bridge> add forward-protocols=ip,arp,other
\... disabled=no
[admin@Our_GW] interface bridge> print
Flags: X - disabled, R - running
  0  R  name="bridge1" mtu=1500 arp=enabled mac-address=00:00:00:00:00:00
     forward-protocols=ip,arp,other priority=1
```

```
[admin@Our_GW] interface bridge> port print
Flags: X - disabled
#   INTERFACE     BRIDGE
  0  eoip-remote   none
  1  office-eth   none
  2  isp          none
[admin@Our_GW] interface bridge> port set "0,1" bridge=bridgel
```
And the same for the Remote:

```
[admin@Remote] interface bridge> add forward-protocols=ip,arp,other \ 
... disabled=no
[admin@Remote] interface bridge> print
Flags: X - disabled, R - running
  0 R name="bridge1" mtu=1500 arp=enabled mac-address=00:00:00:00:00:00
      forward-protocols=ip,arp,other priority=1
[admin@Remote] interface bridge> port print
Flags: X - disabled

# INTERFACE BRIDGE
0 ether none
1 adsl none
2 eoip-main none
```

```
[admin@Remote] interface bridge> port set "0,2" bridge=bridge1
```

4. Addresses from the same network can be used both in the Office LAN and in the Remote LAN.

Troubleshooting

Description

- The routers can ping each other but EoIP tunnel does not seem to work!
 - Check the MAC addresses of the EoIP interfaces - they should not be the same!
IP Security

This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
 Specifications
 Related Documents
 Description
Policy Settings
 Description
 Property Description
 Notes
 Example
Peers
 Description
 Property Description
 Notes
 Example
Remote Peer Statistics
 Description
 Property Description
 Example
Installed SAs
 Description
 Property Description
 Example
Flush SA Table
 Description
 Property Description
 Example
Counters
 Property Description
 Example
MikroTik Router to MikroTik Router
IPSec Between two Masquerading MikroTik Routers
MikroTik router to CISCO Router
MikroTik Router and Linux FreeS/WAN

General Information

Specifications

Packages required: security
License required: level1
Home menu level: /ip ipsec
Standards and Technologies: **IPsec**

Hardware usage: *consumes a lot of CPU time (Intel Pentium MMX or AMD K6 suggested as a minimal configuration)*

Related Documents

- Package Management
- IP Addresses and ARP
- Firewall Filters

Description

IPsec (IP Security) supports secure (encrypted) communications over IP networks.

Encryption

After packet is src-natted, but before putting it into interface queue, IPsec policy database is consulted to find out if packet should be encrypted. Security Policy Database (SPD) is a list of rules that have two parts:

- **Packet matching** - packet source/destination, protocol and ports (for TCP and UDP) are compared to values in policy rules, one after another
- **Action** - if rule matches action specified in rule is performed:
 - **accept** - continue with packet as if there was no IPsec
 - **drop** - drop packet
 - **encrypt** - encrypt packet

Each SPD rule can be associated with several Security Associations (SA) that determine packet encryption parameters (key, algorithm, SPI).

Note that packet can only be encrypted if there is usable SA for policy rule. By setting SPD rule security "level" user can control what happens when there is no valid SA for policy rule:

- **use** - if there is no valid SA, send packet unencrypted (like accept rule)
- **acquire** - send packet unencrypted, but ask IKE daemon to establish new SA
- **require** - drop packet, and ask IKE daemon to establish new SA.

Decryption

When encrypted packet is received for local host (after **dst-nat** and **input** filter), the appropriate SA is looked up to decrypt it (using packet source, destination, security protocol and SPI value). If no SA is found, the packet is dropped. If SA is found, packet is decrypted. Then decrypted packet's fields are compared to policy rule that SA is linked to. If the packet does not match the policy rule it is dropped. If the packet is decrypted fine (or authenticated fine) it is "received once more" - it goes through **dst-nat** and routing (which finds out what to do - either forward or deliver locally) again.

Note that before **forward** and **input** firewall chains, a packet that was not decrypted on local host is compared with SPD reversing its matching rules. If SPD requires encryption (there is valid SA
associated with matching SPD rule), the packet is dropped. This is called incoming policy check.

Internet Key Exchange

The Internet Key Exchange (IKE) is a protocol that provides authenticated keying material for Internet Security Association and Key Management Protocol (ISAKMP) framework. There are other key exchange schemes that work with ISAKMP, but IKE is the most widely used one. Together they provide means for authentication of hosts and automatic management of security associations (SA).

Most of the time IKE daemon is doing nothing. There are two possible situations when it is activated:

- There is some traffic caught by a policy rule which needs to become encrypted or authenticated, but the policy doesn't have any SAs. The policy notifies IKE daemon about that, and IKE daemon initiates connection to remote host.
- IKE daemon responds to remote connection.

In both cases, peers establish connection and execute 2 phases:

- **Phase 1** - The peers agree upon algorithms they will use in the following IKE messages and authenticate. The keying material used to derive keys for all SAs and to protect following ISAKMP exchanges between hosts is generated also.
- **Phase 2** - The peers establish one or more SAs that will be used by IPsec to encrypt data. All SAs established by IKE daemon will have lifetime values (either limiting time, after which SA will become invalid, or amount of data that can be encrypted by this SA, or both).

There are two lifetime values - soft and hard. When SA reaches it's soft lifetime threshold, the IKE daemon receives a notice and starts another phase 2 exchange to replace this SA with fresh one. If SA reaches hard lifetime, it is discarded.

IKE can optionally provide a Perfect Forward Secrecy (PFS), which is a property of key exchanges, that, in turn, means for IKE that compromising the long term phase 1 key will not allow to easily gain access to all IPsec data that is protected by SAs established through this phase 1. It means an additional keying material is generated for each phase 2.

Generation of keying material is computationally very expensive. *Exempli gratia*, the use of modp8192 group can take several seconds even on very fast computer. It usually takes place once per phase 1 exchange, which happens only once between any host pair and then is kept for long time. PFS adds this expensive operation also to each phase 2 exchange.

Diffie-Hellman MODP Groups

Diffie-Hellman (DH) key exchange protocol allows two parties without any initial shared secret to create one securely. The following Modular Exponential (MODP) Diffie-Hellman (also known as "Oakley") Groups are supported:

<table>
<thead>
<tr>
<th>Diffie-Hellman Group</th>
<th>Modulus</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>768 bits</td>
<td>RFC2409</td>
</tr>
<tr>
<td>Group 2</td>
<td>1024 bits</td>
<td>RFC2409</td>
</tr>
</tbody>
</table>
IKE Traffic

To avoid problems with IKE packets hitting some SPD rule and require to encrypt it with not yet established SA (that this packet perhaps is trying to establish), locally originated packets with UDP source port 500 are not processed with SPD. The same way packets with UDP destination port 500 that are to be delivered locally are not processed in incoming policy check.

Setup Procedure

To get IPsec to work with automatic keying using IKE-ISAKMP you will have to configure policy, peer and proposal (optional) entries.

For manual keying you will have to configure policy and manual-sa entries.

Policy Settings

Home menu level: /ip ipsec policy

Description

Policy table is needed to determine whether encryption should be applied to a packet.

Property Description

action (accept | drop | encrypt ; default: accept) - specifies what action to undertake with a packet that matches the policy
 • accept - pass the packet
 • drop - drop the packet
 • encrypt - apply transformations specified in this policy and it's SA
decrypted (integer) - how many incoming packets were decrypted by the policy
dont-fragment (clear | inherit | set ; default: clear) - The state of the don't fragment IP header field
 • clear - clear (unset) the fields, so that packets previously marked as don't fragment got fragmented
 • inherit - do not change the field
 • set - set the field, so that each packet matching the rule will not be fragmented
dst-address (IP address/mask:port ; default: 0.0.0.0/32:any) - destination IP address
encrypted (integer) - how many outgoing packets were encrypted by the policy
in-accepted (integer) - how many incoming packets were passed through by the policy without an attempt to decrypt
in-dropped (integer) - how many incoming packets were dropped by the policy without an attempt to decrypt
ipsec-protocols (multiple choice: ah | esp ; default: esp) - specifies what combination of
Authentication Header and Encapsulating Security Payload protocols you want to apply to matched traffic. AH is applied after ESP, and in case of tunnel mode ESP will be applied in tunnel mode and AH - in transport mode.

level (acquire | require | use; default: require) - specifies what to do if some of the SAs for this policy cannot be found:
- **use** - skip this transform, do not drop packet and do not acquire SA from IKE daemon
- **acquire** - skip this transform, but acquire SA for it from IKE daemon
- **require** - drop packet but acquire SA

manual-sa (name; default: none) - name of manual-sa template that will be used to create SAs for this policy
- **none** - no manual keys are set

not-decrypted (integer) - how many incoming packets the policy attempted to decrypt, but discarded for any reason

not-encrypted (integer) - how many outgoing packets the policy attempted to encrypt, but discarded for any reason

out-accepted (integer) - how many outgoing packets were passed through by the policy without an attempt to encrypt

out-dropped (integer) - how many outgoing packets were dropped by the policy without an attempt to encrypt

ph2-state (read-only: expired | no-phase2 | established) - the progress of key establishing
- **expired** - there are some leftovers from previous phase2. In general it is similar to no-phase2
- **no-phase2** - no keys are established at the moment
- **established** - Appropriate SAs are in place and everything should be working fine

proposal (name; default: default) - name of proposal information that will be sent by IKE daemon to establish SAs for this policy

protocol (name | integer; default: all) - protocol name or number

sa-dst-address (IP address; default: 0.0.0.0) - SA destination IP address

sa-src-address (IP address; default: 0.0.0.0) - SA source IP address

src-address (IP address/mask:port; default: 0.0.0.0/32:any) - source IP address

tunnel (yes | no; default: no) - specifies whether to use tunnel mode

Notes

All packets are IPIP encapsulated in tunnel mode, and their new IP header **src-address** and **dst-address** are set to **sa-src-address** and **sa-dst-address** values of this policy. If you do not use tunnel mode (id est you use transport mode), then only packets whose source and destination addresses are the same as **sa-src-address** and **sa-dst-address** can be processed by this policy. Transport mode can only work with packets that originate at and are destined for IPsec peers (hosts that established security associations). To encrypt traffic between networks (or a network and a host) you have to use tunnel mode.

It is good to have **dont-fragment** cleared because encrypted packets are always bigger than original and thus they may need fragmentation.
If you are using IKE to establish SAs automatically, then policies on both routers must exactly match each other, id est src-address=1.2.3.0/27 on one router and dst-address=1.2.3.0/28 on another would not work. Source address values on one router MUST be equal to destination address values on the other one, and vice versa.

Example

To add a policy to encrypt all the traffic between two hosts (10.0.0.147 and 10.0.0.148), we need do the following:

```
[admin@WiFi] ip ipsec policy> add sa-src-address=10.0.0.147 \n  ... sa-dst-address=10.0.0.148 action=encrypt
[admin@WiFi] ip ipsec policy> print
Flags: X - disabled, D - dynamic, I - invalid
  0 src-address=10.0.0.147/32:any dst-address=10.0.0.148/32:any
  protocol=all action=encrypt level=require ipsec-protocols=esp tunnel=no
  sa-src-address=10.0.0.147 sa-dst-address=10.0.0.148 proposal=default
  manual-sa=none dont-fragment=clear
[admin@WiFi] ip ipsec policy>
```

to view the policy statistics, do the following:

```
[admin@WiFi] ip ipsec policy> print stats
Flags: X - disabled, D - dynamic, I - invalid
  0 src-address=10.0.0.147/32:any dst-address=10.0.0.148/32:any
  protocol=all ph2-state=no-phase2 in-accepted=0 in-dropped=0
      out-accepted=0 out-dropped=0 encrypted=0 not-encrypted=0 decrypted=0
      not-decrypted=0
[admin@WiFi] ip ipsec policy>
```

Peers

Home menu level: /ip ipsec peer

Description

Peer configuration settings are used to establish connections between IKE daemons (phase 1 configuration). This connection then will be used to negotiate keys and algorithms for SAs.

Property Description

address (IP address/mask:port; default: 0.0.0.0/32:500) - address prefix. If remote peer's address matches this prefix, then this peer configuration is used while authenticating and establishing phase 1. If several peer's addresses matches several configuration entries, the most specific one (i.e. the one with largest netmask) will be used.

dh-group (multiple choice: modp768 | modp1024 | modp1536; default: esp) - Diffie-Hellman MODP group (cipher strength)

crypt-algorithm (multiple choice: des | 3des | aes-128 | aes-192 | aes-256; default: 3des) - encryption algorithm. Algorithms are named in strength increasing order.

exchange-mode (multiple choice: main | aggressive | base; default: main) - different ISAKMP phase 1 exchange modes according to RFC 2408. DO not use other modes then main unless you know what you are doing.
generate-policy (yes | no; default: no) - allow this peer to establish SA for non-existing policies. Such policies are created dynamically for the lifetime of SA. This way it is possible, for example, to create IPSec secured L2TP tunnels, or any other setup where remote peer's IP address is not known at configuration time.

hash-algorithm (multiple choice: md5 | sha; default: md5) - hashing algorithm. SHA (Secure Hash Algorithm) is stronger, but slower.

lifebytes (integer; default: 0) - phase 1 lifetime: specifies how much bytes can be transferred before SA is discarded.
 • 0 - SA expiration will not be due to byte count excess

lifetime (time; default: 1d) - phase 1 lifetime: specifies how long the SA will be valid; SA will be discarded after this time.

proposal-check (multiple choice: claim | exact | obey | strict; default: strict) - phase 2 lifetime check logic:
 • claim - take shortest of proposed and configured lifetimes and notify initiator about it
 • exact - require lifetimes to be the same
 • obey - accept whatever is sent by an initiator
 • strict - If proposed lifetime IS longer than default then reject proposal otherwise accept proposed lifetime.

secret (text; default: "") - secret string. If it starts with '0x', it is parsed as a hexadecimal value.

send-initial-contact (yes | no; default: yes) - specifies whether to send initial IKE information or wait for remote side.

Notes

AES (Advanced Encryption Standard) encryption algorithms are much faster than DES, so it is recommended to use this algorithm class whenever possible. But, AES's speed is also its drawback as it potentially can be cracked faster, so use AES-256 when you need security or AES-128 when speed is also important.

Both peers MUST have the same encryption and authentication algorithms, DH group and exchange mode. Some legacy hardware may support only DES and MD5.

You should set generate-policy flag to yes only for trusted peers, because there is no verification done for the established policy. To protect yourself against possible unwanted events, add policies with action=accept for all networks you don't want to be encrypted at the top of policy list. Since dynamic policies are added at the bottom of the list, they will not be able to override your configuration.

Example

To define new peer configuration for 10.0.0.147 peer with secret=gwejimeyzfopmekun:

```
[admin@WiFi] ip ipsec peer>add address=10.0.0.147/32 \n... secret=gwejimeyzfopmekun
[admin@WiFi] ip ipsec peer> print
Flags: X - disabled  
 0 address=10.0.0.147/32:500 secret='gwejimeyzfopmekun' generate-policy=no  
  exchange-mode=main send-initial-contact=yes proposal-check=obey  
  hash-algorithm=md5 enc-algorithm=3des dh-group=modp1024 lifetime=1d  
  lifebytes=0
```
Remote Peer Statistics

Home menu level: /ip ipsec remote-peers

Description

This submenu provides you with various statistics about remote peers that currently have established phase 1 connections with this router. Note that if peer doesn't show up here, it doesn't mean that no IPsec traffic is being exchanged with it. For example, manually configured SAs will not show up here.

Property Description

- **established** (read-only: text) - shows date and time when phase 1 was established with the peer
- **local-address** (read-only: IP address) - local ISAKMP SA address
- **ph2-active** (read-only: integer) - how many phase 2 negotiations with this peer are currently taking place
- **ph2-total** (read-only: integer) - how many phase 2 negotiations with this peer took place
- **remote-address** (read-only: IP address) - peer's IP address
- **side** (multiple choice, read-only: initiator | responder) - shows which side initiated the connection
 - **initiator** - phase 1 negotiation was started by this router
 - **responder** - phase 1 negotiation was started by peer
- **state** (read-only: text) - state of phase 1 negotiation with the peer
 - **established** - normal working state

Example

To see currently established SAs:

```
[admin@WiFi] ip ipsec> remote-peers print
  0 local-address=10.0.0.148 remote-address=10.0.0.147 state=established
    side=initiator established=jan/25/2003 03:34:45 ph2-active=0 ph2-total=1
[admin@WiFi] ip ipsec>
```

Installed SAs

Home menu level: /ip ipsec installed-sa

Description

This facility provides information about installed security associations including the keys

Property Description

- **add-lifetime** (read-only: time) - soft/hard expiration time counted from installation of SA
auth-algorithm (multiple choice, read-only: none | md5 | sha1) - authentication algorithm used in SA

auth-key (read-only: text) - authentication key presented in form of hex string

current-addtime (read-only: text) - time when this SA was installed

current-bytes (read-only: integer) - amount of data processed by this SA's crypto algorithms

current-use-time (read-only: text) - time when this SA was first used

direction (multiple choice, read-only: in | out) - SA direction

dst-address (read-only: IP address) - destination address of SA taken from respective policy

ever-algorithm (multiple choice, read-only: none | des | 3des | aes) - encryption algorithm used in SA

ever-key (read-only: text) - encryption key presented in form of hex string (not applicable to AH SAs)

diffbytes (read-only: integer) - soft/hard expiration threshold for amount of processed data

diff-window (read-only: integer) - size of replay window presented in bytes. This window protects the receiver against replay attacks by rejecting old or duplicate packets.

spi (read-only: integer) - SPI value of SA, represented in hexadecimal form

src-address (read-only: IP address) - source address of SA taken from respective policy

state (multiple choice, read-only: larval | mature | dying | dead) - SA living phase

use-lifetime (read-only: text) - soft/hard expiration time counted from the first use of SA

Example

Sample printout looks as follows:

[admin@WiFi] ip ipsec> installed-sa print
Flags: A - AH, E - ESP, P - pfs, M - manual
0 E spi=E727605 direction=in src-address=10.0.0.148
dst-address=10.0.0.147 auth-algorithm=sha1 enc-algorithm=3des
replay=4 state=mature
auth-key="ecc5f4aee1b297739ec88e32d7cfb8594aa6c35"
enc-key="d6943b8ea582582e449bde085c9471ab0b209783c9eb4bbd"
add-lifetime=24m/30m use-lifetime=0s/0s lifebytes=0/0
1 E spi=E13C6E06 direction=out src-address=10.0.0.148
dst-address=10.0.0.147 auth-algorithm=sha1 enc-algorithm=3des
replay=4 state=mature
auth-key="8a9cd7ceceb6ed9cd1030ae3b07b32e8e5cb98af"
enc-key="8a8073a7af0f74518c10438a0023e64cc660ed69845ca3c"
add-lifetime=24m/30m use-lifetime=0s/0s lifebytes=0/0

[admin@WiFi] ip ipsec>

Flushing Installed SA Table

Command name: /ip ipsec installed-sa flush

Description

Sometimes after incorrect/incomplete negotiations took place, it is required to flush manually the
installed SA table so that SA could be renegotiated. This option is provided by the \texttt{flush} command.

\textbf{Property Description}

\texttt{sa-type} (\textit{multiple choice: ah | all | esp} ; default: \texttt{all}) - specifies SA types to flush

- \texttt{ah} - delete AH protocol SAs only
- \texttt{esp} - delete ESP protocol SAs only
- \texttt{all} - delete both ESP and AH protocols SAs

\textbf{Example}

To flush all the SAs installed:

\begin{verbatim}
[admin@MikroTik] ip ipsec installed-sa> flush
[admin@MikroTik] ip ipsec installed-sa> print
[admin@MikroTik] ip ipsec installed-sa>
\end{verbatim}

\textbf{Counters}

Home menu level: /ip ipsec counters

\textbf{Property Description}

\texttt{in-accept} (\textit{read-only: integer}) - shows how many incoming packets were matched by accept policy

\texttt{in-accept-isakmp} (\textit{read-only: integer}) - shows how many incoming UDP packets on port 500 were let through without matching a policy

\texttt{in-decrypted} (\textit{read-only: integer}) - shows how many incoming packets were successfully decrypted

\texttt{in-drop} (\textit{read-only: integer}) - shows how many incoming packets were matched by drop policy (or encrypt policy with level=require that does not have all necessary SAs)

\texttt{in-drop-encrypted-expected} (\textit{read-only: integer}) - shows how many incoming packets were matched by encrypt policy and dropped because they were not encrypted

\texttt{out-accept} (\textit{read-only: integer}) - shows how many outgoing packets were matched by accept policy (including the default "accept all" case)

\texttt{out-accept-isakmp} (\textit{read-only: integer}) - shows how many locally originated UDP packets on source port 500 (which is how ISAKMP packets look) were let through without policy matching

\texttt{out-drop} (\textit{read-only: integer}) - shows how many outgoing packets were matched by drop policy (or encrypt policy with level=require that does not have all necessary SAs)

\texttt{out-encrypt} (\textit{read-only: integer}) - shows how many outgoing packets were encrypted successfully

\textbf{Example}

To view current statistics:

\begin{verbatim}
[admin@WiFi] ip ipsec> counters print
out-accept: 6
\end{verbatim}
out-accept-isakmp: 0
out-drop: 0
out-encrypt: 7
in-accept: 12
in-accept-isakmp: 0
in-drop: 0
in-decrypted: 7
in-drop-encrypted-expected: 0

[admin@WiFi] ip ipsec>

General Information

MikroTik Router to MikroTik Router

• transport mode example using ESP with automatic keying
 • for Router1
 [admin@Router1] > ip ipsec policy add sa-src=1.0.0.1 sa-dst=1.0.0.2
 \... action=encrypt
 [admin@Router1] > ip ipsec peer add address=1.0.0.2
 \... secret="gvejimezyfopmekun"
 • for Router2
 [admin@Router2] > ip ipsec policy add sa-src=1.0.0.2 sa-dst=1.0.0.1
 \... action=encrypt
 [admin@Router2] > ip ipsec peer add address=1.0.0.1
 \... secret="gvejimezyfopmekun"

• transport mode example using ESP with automatic keying and automatic policy generating on Router 1 and static policy on Router 2
 • for Router1
 [admin@Router1] > ip ipsec peer add address=1.0.0.0/24
 \... secret="gvejimezyfopmekun" generate-policy=yes
 • for Router2
 [admin@Router2] > ip ipsec policy add sa-src=1.0.0.2 sa-dst=1.0.0.1
 \... action=encrypt
 [admin@Router2] > ip ipsec peer add address=1.0.0.1
 \... secret="gvejimezyfopmekun"

• tunnel mode example using AH with manual keying
 • for Router1
 [admin@Router1] > ip ipsec manual-sa add name=ah-sa1
 \... ah-spi=0x101/0x100 ah-key=abcfed
 [admin@Router1] > ip ipsec policy add src-address=10.1.0.0/24
 \... dst-address=10.2.0.0/24 action=encrypt ipsec-protocols=ah
 \... tunnel=yes sa-src=1.0.0.1 sa-dst=1.0.0.2 manual-sa=ah-sa1
 • for Router2
 [admin@Router2] > ip ipsec manual-sa add name=ah-sa1
 \... ah-spi=0x100/0x101 ah-key=abcfed
 [admin@Router2] > ip ipsec policy add src-address=10.2.0.0/24
 \... dst-address=10.1.0.0/24 action=encrypt ipsec-protocols=ah
 \... tunnel=yes sa-src=1.0.0.2 sa-dst=1.0.0.1 manual-sa=ah-sa1
IPsec Between two Masquerading MikroTik Routers

1. Add accept and masquerading rules in SRC-NAT
 - for Router1
     ```
     [admin@Router1] > ip firewall src-nat \
     \... add src-address=10.1.0.0/24 dst-address=10.2.0.0/24 \
     [admin@Router1] > ip firewall src-nat add out-interface=public \
     \... action=masquerade
     ```
 - for Router2
     ```
     [admin@Router2] > ip firewall src-nat \
     \... add src-address=10.2.0.0/24 dst-address=10.1.0.0/24 \
     [admin@Router2] > ip firewall src-nat add out-interface=public \
     \... action=masquerade
     ```

2. configure IPsec
 - for Router1
     ```
     [admin@Router1] > ip ipsec policy add src-address=10.1.0.0/24 \
     \... dst-address=10.2.0.0/24 action=encrypt tunnel=yes \
     [admin@Router1] > ip ipsec peer add address=1.0.0.2 \
     \... exchange-mode=aggressive secret="gvejimezyfopmekun"
     ```
 - for Router2
     ```
     [admin@Router2] > ip ipsec policy add src-address=10.2.0.0/24 \
     \... dst-address=10.1.0.0/24 action=encrypt tunnel=yes \
     [admin@Router2] > ip ipsec peer add address=1.0.0.1 \
     \... exchange-mode=aggressive secret="gvejimezyfopmekun"
     ```

MikroTik router to CISCO Router

We will configure IPsec in tunnel mode in order to protect traffic between attached subnets.

1. Add peer (with phase1 configuration parameters), DES and SHA1 will be used to protect IKE traffic
 - for MikroTik router
     ```
     [admin@MikroTik] > ip ipsec peer add address=10.0.1.2 \
     \... secret="gvejimezyfopmekun" enc-algorithm=des
     ```
 - for CISCO router
     ```
     ! Configure ISAKMP policy (phase1 config, must match configuration
     ! of "/ip ipsec peer" on RouterOS). Note that DES is default
     ! encryption algorithm on Cisco. SHA1 is default authentication
     ! algorithm
     crypto isakmp policy 9
     encryption des
     authentication pre-share
     group 2
     hash md5
     exit
     ```
     ```
     ! Add preshared key to be used when talking to RouterOS
     crypto isakmp key gvejimezyfopmekun address 10.0.1.1 255.255.255.255
     ```
2. Set encryption proposal (phase2 proposal - settings that will be used to encrypt actual data) to use DES to encrypt data
 - for MikroTik router
 [admin@MikroTik] > ip ipsec proposal set default enc-algorithms=des
 - for CISCO router
 ! Create IPsec transform set - transformations that should be applied to traffic - ESP encryption with DES and ESP authentication with SHA1
 ! This must match "/ip ipsec proposal"
 crypto ipsec transform-set myset esp-des esp-sha-hmac mode tunnel exit

3. Add policy rule that matches traffic between subnets and requires encryption with ESP in tunnel mode
 - for MikroTik router
 [admin@MikroTik] > ip ipsec policy add \\ ... src-address=10.0.0.0/24 dst-address=10.0.2.0/24 action=encrypt \\ ... tunnel=yes sa-src=10.0.1.1 sa-dst=10.0.1.2
 - for CISCO router
 ! Create access list that matches traffic that should be encrypted
 access-list 101 permit ip 10.0.2.0 0.0.0.255 10.0.0.0 0.0.0.255
 ! to establish SAs and encapsulate traffic and use access-list 101 to match traffic that should be encrypted
 crypto map mymap 10 ipsec-isakmp
 set peer 10.0.1.1
 set transform-set myset
 set pfs group2
 match address 101
 exit
 ! And finally apply crypto map to serial interface:
 interface Serial 0
 crypto map mymap
 exit

4. Testing the IPsec tunnel
 - on MikroTik router we can see installed SAs
 [admin@MikroTik] ip ipsec installed-sa> print
 Flags: A - AH, E - ESP, P - pfs, M - manual
 0 E spi=9437482 direction=out src-address=10.0.1.1
dst-address=10.0.1.2 auth-algorithm=sha1 enc-algorithm=des
 replay=4 state=mature
 auth-key="9cf2123bb5add950e3e67b9eac79421d406aa09"
 enc-key="ffe7ec65b7a385c3" add-lifetime=24m/30m use-lifetime=0s/0s
 lifebytes=0/0 current-addtime=jul/12/2002 16:13:21
 current-usetime=jul/12/2002 16:13:21 current-bytes=71896
 1 E spi=319317260 direction=in src-address=10.0.1.2
dst-address=10.0.0.1.1 auth-algorithm=sha1 enc-algorithm=des
 replay=4 state=mature
 auth-key="7575f5624914dd312839694db2622a318030bc3b"
 enc-key="633593f809c9d6af" add-lifetime=24m/30m use-lifetime=0s/0s
 lifebytes=0/0 current-addtime=jul/12/2002 16:13:21
 current-usetime=jul/12/2002 16:13:21 current-bytes=0
[admin@MikroTik] ip ipsec installed-sa>
 - on CISCO router
cisco# show interface Serial 0
interface: Serial1
 Crypto map tag: mymap, local addr. 10.0.1.2
 local ident (addr/mask/prot/port): (10.0.2.0/255.255.255.0/0/0)
 remote ident (addr/mask/prot/port): (10.0.0.0/255.255.255.0/0/0)
 current_peer: 10.0.1.1
 PERMIT, flags={origin_is_acl,}
 #pkts encpas: 1810, #pkts encrypt: 1810, #pkts digest 1810
 #pkts decaps: 1861, #pkts decrypt: 1861, #pkts verify 1861
 #pkts compressed: 0, #pkts decompressed: 0
 #pkts not compressed: 0, #pkts compr. failed: 0, #pkts decompress failed: 0
 #send errors 0, #recv errors 0
 local crypto endpt.: 10.0.1.2, remote crypto endpt.: 10.0.1.1
 path mtu 1500, media mtu 1500
 current outbound spi: 1308650C
 inbound esp sas:
 spi: 0x90012A(9437482)
 transform: esp-des esp-sha-hmac ,
 in use settings ={Tunnel, }
 slot: 0, conn id: 2000, flow id: 1, crypto map: mymap
 sa timing: remaining key lifetime (k/sec): (4607891/1034)
 IV size: 8 bytes
 replay detection support: Y
 inbound ah sas:
 inbound pcp sas:
 outbound esp sas:
 spi: 0x1308650C(319317260)
 transform: esp-des esp-sha-hmac ,
 in use settings ={Tunnel, }
 slot: 0, conn id: 2001, flow id: 2, crypto map: mymap
 sa timing: remaining key lifetime (k/sec): (4607893/1034)
 IV size: 8 bytes
 replay detection support: Y
 outbound ah sas:
 outbound pcp sas:

MikroTik Router and Linux FreeS/WAN

In the test scenario we have 2 private networks: 10.0.0.0/24 connected to the MT and 192.168.87.0/24 connected to Linux. MT and Linux are connected together over the "public" network 192.168.0.0/24:

- FreeS/WAN configuration:

```
config setup
    interfaces="ipsec0=eth0"
    klipsdebug=none
    plutodebug=all
    plutoload=%search
    plutostart=%search
    uniquelds=yes

conn %default
    keyingtries=0
    disablearrivalcheck=no
    authby=rsasig

conn mt
    left=192.168.0.108
    leftsubnet=192.168.87.0/24
    right=192.168.0.155
    rightsubnet=10.0.0.0/24
    authby=secret
    pfs=no
    auto=add
```

- ipsec.secrets config file:
192.168.0.108 192.168.0.155 : PSK "gvejimezyfopmekun"

- MikroTik Router configuration:

 [admin@MikroTik] > /ip ipsec peer add address=192.168.0.108 \\
 \... secret="gvejimezyfopmekun" hash-algorithm=md5 enc-algorithm=3des \\
 \... dh-group=modp1024 lifetime=28800s

 [admin@MikroTik] > /ip ipsec proposal auth-algorithms=md5 \\
 \... enc-algorithms=3des pfs-group=none

 [admin@MikroTik] > /ip ipsec policy add sa-src-address=192.168.0.155 \\
 \... sa-dst-address=192.168.0.108 src-address=10.0.0.0/24 \\
 \... dst-address=192.168.87.0/24 tunnel=yes
IPIP Tunnel Interfaces

Summary

The IPIP tunneling implementation on the MikroTik RouterOS is RFC 2003 compliant. IPIP tunnel is a simple protocol that encapsulates IP packets in IP to make a tunnel between two routers. The IPIP tunnel interface appears as an interface under the interface list. Many routers, including Cisco and Linux based, support this protocol. This protocol makes multiple network schemes possible.

IP tunneling protocol adds the following possibilities to a network setups:

- to tunnel Intranets over the Internet
- to use it instead of source routing

Quick Setup Guide

To make an IPIP tunnel between 2 MikroTik routers with IP addresses 10.5.8.104 and 10.1.0.172, using IPIP tunnel addresses 10.0.0.1 and 10.0.0.2, follow the next steps.

1. Configuration on router with IP address 10.5.8.104:

   ```
   [admin@10.5.8.104] interface ipip> add local-address=10.5.8.104
   remote-address=10.1.0.172 disabled=no
   ```

2. Add an IP address to created ipip1 interface:

   ```
   [admin@10.5.8.104] ip address> add address=10.0.0.1/24 interface=ipip1
   ```

3. Configuration on router with IP address 10.1.0.172:
1. Add an IPIP interface (by default, its name will be **ipip1**):

   ```
   [admin@10.1.0.172] interface ipip> add local-address=10.1.0.172 \
   remote-address=10.5.8.104 disabled=no
   ```

2. Add an IP address to created **ipip1** interface:

   ```
   [admin@10.1.0.172] ip address> add address=10.0.0.2/24 interface=ipip1
   ```

Specifications

- **Packages required**: `system`
- **License required**: `level1 (limited to 1 tunnel) , level3 (200 tunnels) , level5 (unlimited)`
- **Home menu level**: `/interface ipip`
- **Standards and Technologies**: *IPIP (RFC 2003)*
- **Hardware usage**: *Not significant*

Related Documents

- [Package Management](#)
- [Device Driver List](#)
- [IP Addresses and ARP](#)
- [Log Management](#)

Additional Documents

IPIP Setup

Home menu level: `/interface ipip`

Description

An IPIP interface should be configured on two routers that have the possibility for an IP level connection and are *RFC 2003* compliant. The IPIP tunnel may run over any connection that transports IP. Each IPIP tunnel interface can connect with one remote router that has a corresponding interface configured. An unlimited number of IPIP tunnels may be added to the router. For more details on IPIP tunnels, see *RFC 2003*.

Property Description

- **name** (default: **ipipN**) - interface name for reference
- **mtu** (default: **1480**) - Maximum Transmission Unit. Should be set to 1480 bytes to avoid fragmentation of packets. May be set to 1500 bytes if mtu path discovery is not working properly
on links

local-address *(IP address)* - local address on router which sends IPIP traffic to the remote host

remote-address *(IP address)* - the IP address of the remote host of the IPIP tunnel - may be any RFC 2003 compliant router

Notes

Use `/ip address add` command to assign an **IP address** to the IPIP interface.

There is no authentication or 'state' for this interface. The bandwidth usage of the interface may be monitored with the **monitor** feature from the **interface** menu.

MikroTik RouterOS IPIP implementation has been tested with Cisco 1005. The sample of the Cisco 1005 configuration is given below:

```
interface Tunnel0
  ip address 10.3.0.1 255.255.255.0
  tunnel source 10.0.0.171
  tunnel destination 10.0.0.204
  tunnel mode ipip
```

General Information

Description

Suppose we want to add an IPIP tunnel between routers **R1** and **R2**:

At first, we need to configure IPIP interfaces and then add **IP addresses** to them.

The configuration for router **R1** is as follows:

```
[admin@MikroTik] interface ipip> add
local-address: 10.0.0.1
remote-address: 22.63.11.6
[admin@MikroTik] interface ipip> print
Flags: X - disabled, R - running
#  NAME   MTU  LOCAL-ADDRESS   REMOTE-ADDRESS
0 X  ipip1  1480 10.0.0.1    22.63.11.6

[admin@MikroTik] interface ipip> enable 0
[admin@MikroTik] interface ipip> /ip address add address 1.1.1.1/24 interface=ipip1
```

The configuration of the **R2** is shown below:

```
[admin@MikroTik] interface ipip> add local-address=22.63.11.6 remote-address=10.0.0.1
[admin@MikroTik] interface ipip> print
Flags: X - disabled, R - running
#  NAME   MTU  LOCAL-ADDRESS   REMOTE-ADDRESS
0 X  ipip1  1480 22.63.11.6  10.0.0.1

[admin@MikroTik] interface ipip> enable 0
[admin@MikroTik] interface ipip> /ip address add address 1.1.1.2/24 interface=ipip1
```

Now both routers can ping each other:

```
[admin@MikroTik] interface ipip> /ping 1.1.1.2
1.1.1.2 64 byte ping: ttl=64 time=24 ms
1.1.1.2 64 byte ping: ttl=64 time=19 ms
1.1.1.2 64 byte ping: ttl=64 time=20 ms
3 packets transmitted, 3 packets received, 0% packet loss
```
round-trip min/avg/max = 19/21.0/24 ms
[admin@MikroTik] interface ipip>
L2TP Interface

Document revision 1.1 (Fri Mar 05 08:26:01 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
General Information
 Summary
 Quick Setup Guide
 Specifications
 Related Documents
 Description
L2TP Client Setup
 Property Description
 Example
Monitoring L2TP Client
 Property Description
 Example
L2TP Server Setup
 Description
 Property Description
 Example
L2TP Server Users
 Description
 Property Description
 Example
L2TP Application Examples
 Router-to-Router Secure Tunnel Example
 Connecting a Remote Client via L2TP Tunnel
 L2TP Setup for Windows
Troubleshooting
 Description

General Information

Summary

L2TP (Layer 2 Tunnel Protocol) supports encrypted tunnels over IP. The MikroTik RouterOS implementation includes support for both L2TP client and server.

General applications of L2TP tunnels include:

- secure router-to-router tunnels over the Internet
- linking (bridging) local Intranets or LANs (in cooperation with EoIP)
- extending PPP user connections to a remote location (for example, to separate authentication and Internet access points for ISP)
• accessing an Intranet/LAN of a company for remote (mobile) clients (employees)

Each L2TP connection is composed of a server and a client. The MikroTik RouterOS may function as a server or client or, for various configurations, it may be the server for some connections and client for other connections.

Quick Setup Guide

To make a L2TP tunnel between 2 MikroTik routers with IP addresses **10.5.8.104** (L2TP server) and **10.1.0.172** (L2TP client), follow the next steps.

- **Configuration on L2TP server router:**
 1. Add a L2TP user:
     ```
     [admin@L2TP-Server] ppp secret> add name=james password=pass \
     ... local-address=10.0.0.1 remote-address=10.0.0.2
     ```
 2. Enable the L2TP server
     ```
     [admin@L2TP-Server] interface l2tp-server server> set enabled=yes
     ```

- **Configuration on L2TP client router:**
 1. Add a L2TP client:
     ```
     [admin@L2TP-Client] interface l2tp-client> add user=james password=pass \
     ... connect-to=10.5.8.104
     ```

Specifications

Packages required: **ppp**
License required: **level1 (limited to 1 tunnel)**, **level3 (limited to 200 tunnels)**, **level5**
Home menu level: **/interface l2tp-server**, **/interface l2tp-client**
Standards and Technologies: **L2TP (RFC 2661)**
Hardware usage: **Not significant**

Related Documents

- **Package Management**
- **IP Addresses and ARP**
- **AAA**
- **EoIP Tunnel Interface**
- **IP Security**

Description

L2TP is a secure tunnel protocol for transporting IP traffic using PPP. L2TP encapsulates PPP in virtual lines that run over IP, Frame Relay and other protocols (that are not currently supported by MikroTik RouterOS). L2TP incorporates PPP and MPPE (Microsoft Point to Point Encryption) to make encrypted links. The purpose of this protocol is to allow the Layer 2 and PPP endpoints to
reside on different devices interconnected by a packet-switched network. With L2TP, a user has a Layer 2 connection to an access concentrator - LAC (e.g., modem bank, ADSL DSLAM, etc.), and the concentrator then tunnels individual PPP frames to the Network Access Server - NAS. This allows the actual processing of PPP packets to be divorced from the termination of the Layer 2 circuit. From the user's perspective, there is no functional difference between having the L2 circuit terminate in a NAS directly or using L2TP.

It may also be useful to use L2TP just as any other tunneling protocol with or without encryption. The L2TP standard says that the most secure way to encrypt data is using L2TP over IPsec (Note that it is default mode for Microsoft L2TP client) as all L2TP control and data packets for a particular tunnel appear as homogeneous UDP/IP data packets to the IPsec system.

L2TP includes PPP authentication and accounting for each L2TP connection. Full authentication and accounting of each connection may be done through a RADIUS client or locally.

MPPE 40bit RC4 and MPPE 128bit RC4 encryption are supported.

L2TP traffic uses UDP protocol for both control and data packets. UDP port 1701 is used only for link establishment, further traffic is using any available UDP port (which may or may not be 1701). This means that L2TP can be used with most firewalls and routers (even with NAT) by enabling UDP traffic to be routed through the firewall or router.

L2TP Client Setup

Home menu level: `/interface l2tp-client`

Property Description

- **name** (name; default: **l2tp-outN**) - interface name for reference
- **mtu** (integer; default: **1460**) - Maximum Transmission Unit. The optimal value is the MTU of the interface the tunnel is working over decreased by 40 (so, for 1500-byte Ethernet link, set the MTU to 1460 to avoid fragmentation of packets)
- **mru** (integer; default: **1460**) - Maximum Receive Unit. The optimal value is the MRU of the interface the tunnel is working over decreased by 40 (so, for 1500-byte Ethernet link, set the MRU to 1460 to avoid fragmentation of packets)
- **connect-to** (IP address) - The IP address of the L2TP server to connect to
- **user** (text) - user name to use when logging on to the remote server
- **password** (text; default: "") - user password to use when logging to the remote server
- **profile** (name; default: **default**) - profile to use when connecting to the remote server
- **allow** (multiple choice: mschap2, mschap1, chap, pap; default: mschap2, mschap1, chap, pap) - the protocol to allow the client to use for authentication
- **add-default-route** (yes | no; default: **no**) - whether to use the server which this client is connected to as its default router (gateway)

Example

To set up L2TP client named **test2** using username **john** with password **john** to connect to the 10.1.1.12 L2TP server and use it as the default gateway:
Monitoring L2TP Client

Command name: `/interface l2tp-client monitor`

Property Description

status (text) - status of the client

- **Dialing** - attempting to make a connection
- **Verifying password...** - connection has been established to the server, password verification in progress
- **Connected** - self-explanatory
- **Terminated** - interface is not enabled or the other side will not establish a connection

uptime (time) - connection time displayed in days, hours, minutes and seconds

encoding (text) - encryption and encoding (if asymmetric, separated with '/') being used in this connection

Example

Example of an established connection

```
[admin@MikroTik] interface l2tp-client> monitor test2
  status: "connected"
  uptime: 4m27s
  encoding: "MPPE128 stateless"
[admin@MikroTik] interface l2tp-client>
```

L2TP Server Setup

Home menu level: `/interface l2tp-server server`

Description

The L2TP server creates a dynamic interface for each connected L2TP client. The L2TP connection count from clients depends on the license level you have. Level1 license allows 1 L2TP client, Level3 or Level4 licenses up to 200 clients, and Level5 or Level6 licenses do not have L2TP client limitations.

To create L2TP users, you should consult the **PPP secret** and **PPP Profile** manuals. It is also possible to use the MikroTik router as a RADIUS client to register the L2TP users, see the manual how to do it.

Property Description
enabled (yes | no; default: no) - defines whether L2TP server is enabled or not

mtu (integer; default: 1460) - Maximum Transmission Unit. The optimal value is the MTU of the interface the tunnel is working over decreased by 40 (so, for 1500-byte Ethernet link, set the MTU to 1460 to avoid fragmentation of packets)

mru (integer; default: 1460) - Maximum Receive Unit. The optimal value is the MRU of the interface the tunnel is working over decreased by 40 (so, for 1500-byte Ethernet link, set the MRU to 1460 to avoid fragmentation of packets)

authentication (multiple choice: pap | chap | mschap1 | mschap2; default: mschap2) - authentication algorithm

default-profile - default profile to use

Example

To enable L2TP server:

[admin@MikroTik] interface l2tp-server server> set enabled=yes
[admin@MikroTik] interface l2tp-server server> print
enabled: yes
mtu: 1460
mru: 1460
authentication: mschap2
default-profile: default
[admin@MikroTik] interface l2tp-server server>

L2TP Server Users

Home menu level: /interface l2tp-server

Description

There are two types of items in L2TP server configuration - static users and dynamic connections. A dynamic connection can be established if the user database or the default-profile has its local-address and remote-address set correctly. When static users are added, the default profile may be left with its default values and only PPP user (in /ppp secret) should be configured. Note that in both cases PPP users must be configured properly.

Property Description

name (name) - interface name
user (text) - the name of the user that is configured statically or added dynamically
mtu - shows client's MTU
client-address - shows the IP of the connected client
uptime - shows how long the client is connected
encoding (text) - encryption and encoding (if asymmetric, separated with '/') being used in this connection

Example

To add a static entry for ex1 user:
L2TP Application Examples

Router-to-Router Secure Tunnel Example

There are two routers in this example:

- [HomeOffice]
 Interface LocalHomeOffice 10.150.2.254/24
 Interface ToInternet 192.168.80.1/24
- [RemoteOffice]
 Interface ToInternet 192.168.81.1/24
 Interface LocalRemoteOffice 10.150.1.254/24

Each router is connected to a different ISP. One router can access another router through the Internet.

On the L2TP server a user must be set up for the client:

```
[admin@HomeOffice] ppp secret> add name=ex service=l2tp password=lkjrh local-address=10.0.103.1 remote-address=10.0.103.2
[admin@HomeOffice] ppp secret> print detail
Flags: X - disabled
  0 name="ex" service=l2tp caller-id="" password="lkjrht" profile=default local-address=10.0.103.1 remote-address=10.0.103.2 routes=""
```

Then the user should be added in the L2TP server list:

```
[admin@HomeOffice] interface l2tp-server> add user=ex
[admin@HomeOffice] interface l2tp-server> print
Flags: X - disabled, D - dynamic, R - running
  #  NAME USER MTU CLIENT-ADDRESS UPTIME ENC...
  0  DR <l2tp-ex> ex 1460 10.0.0.202 6m32s none
  1  l2tp-in1 ex1
```

And finally, the server must be enabled:

```
[admin@HomeOffice] interface l2tp-server server> set enabled=yes
[admin@HomeOffice] interface l2tp-server server> print
enabled: yes
  mtu: 1460
  mru: 1460
  authentication: mschap2
default-profile: default
```

Add a L2TP client to the RemoteOffice router:

```
[admin@RemoteOffice] interface l2tp-client> add connect-to=192.168.80.1 user=ex \ password=lkjrh disabled=no
```

In this example an already connected user `ex` is shown besides the one we just added.
Thus, a L2TP tunnel is created between the routers. This tunnel is like an Ethernet point-to-point connection between the routers with IP addresses 10.0.103.1 and 10.0.103.2 at each router. It enables 'direct' communication between the routers over third party networks.

To route the local Intranets over the L2TP tunnel you need to add these routes:

```
[admin@HomeOffice] > ip route add dst-address 10.150.1.0/24 gateway 10.0.103.2
[admin@RemoteOffice] > ip route add dst-address 10.150.2.0/24 gateway 10.0.103.1
```

On the L2TP server it can alternatively be done using `routes` parameter of the user configuration:

```
[admin@HomeOffice] ppp secret> print detail
Flags: X - disabled
0 name="ex" service=l2tp caller-id="" password="lkjrht" profile=default
  local-address=10.0.103.1 remote-address=10.0.103.2 routes=""

[admin@HomeOffice] ppp secret> set 0 routes="10.150.1.0/24 10.0.103.2 1"
[admin@HomeOffice] ppp secret> print detail
Flags: X - disabled
0 name="ex" service=l2tp caller-id="" password="lkjrht" profile=default
  local-address=10.0.103.1 remote-address=10.0.103.2
  routes="10.150.1.0/24 10.0.103.2 1"
```

Test the L2TP tunnel connection:

```
[admin@RemoteOffice]> /ping 10.0.103.1
10.0.103.1 pong: ttl=255 time=3 ms
10.0.103.1 pong: ttl=255 time=3 ms
10.0.103.1 pong: ttl=255 time=3 ms
ping interrupted
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 3/3.0/3 ms
```

Test the connection through the L2TP tunnel to the LocalHomeOffice interface:

```
[admin@RemoteOffice]> /ping 10.150.2.254
10.150.2.254 pong: ttl=255 time=3 ms
10.150.2.254 pong: ttl=255 time=3 ms
10.150.2.254 pong: ttl=255 time=3 ms
ping interrupted
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 3/3.0/3 ms
```

To bridge a LAN over this secure tunnel, please see the example in the 'EoIP' section of the manual.

To set the maximum speed for traffic over this tunnel, please consult the 'Queues' section.

Connecting a Remote Client via L2TP Tunnel

The following example shows how to connect a computer to a remote office network over L2TP encrypted tunnel giving that computer an IP address from the same network as the remote office has (without need of bridging over EoIP tunnels).

Please, consult the respective manual on how to set up a L2TP client with the software you are using.
The router in this example:

- [RemoteOffice]
 Interface ToInternet 192.168.81.1/24
 Interface Office 10.150.1.254/24

The client computer can access the router through the Internet.

On the L2TP server a user must be set up for the client:

```
[admin@RemoteOffice] ppp secret> add name=ex service=l2tp password=lkjhrht
local-address=10.150.1.254 remote-address=10.150.1.2
[admin@RemoteOffice] ppp secret> print detail
Flags: X - disabled
  0 name="ex" service=l2tp caller-id="" password="lkjhrht" profile=default
    local-address=10.150.1.254 remote-address=10.150.1.2 routes=""
[admin@RemoteOffice] ppp secret>
```

Then the user should be added in the L2TP server list:

```
[admin@RemoteOffice] interface l2tp-server> add name=FromLaptop user=ex
[admin@RemoteOffice] interface l2tp-server> print
Flags: X - disabled, D - dynamic, R - running
#   NAME    USER  MTU  CLIENT-ADDRESS  UPTIME  ENC...
 0  FromLaptop  ex
[admin@RemoteOffice] interface l2tp-server>
```

And the server must be enabled:

```
[admin@RemoteOffice] interface l2tp-server server> set enabled=yes
[admin@RemoteOffice] interface l2tp-server server> print
enabled: yes
  mtu: 1460
  mru: 1460
  authentication: mschap2
  default-profile: default
[admin@RemoteOffice] interface l2tp-server server>
```

Finally, the proxy APR must be enabled on the 'Office' interface:

```
[admin@RemoteOffice] interface ethernet> set Office arp=proxy-arp
[admin@RemoteOffice] interface ethernet> print
Flags: X - disabled, R - running
#   NAME   MTU  MAC-ADDRESS  ARP
 0  R ToInternet  1500  00:30:4F:0B:7B:C1 enabled
 1  R Office   1500  00:30:4F:06:62:12 proxy-arp
[admin@RemoteOffice] interface ethernet>
```

L2TP Setup for Windows

Microsoft provides L2TP client support for Windows XP, 2000, NT4, ME and 98. Windows 2000 and XP include support in the Windows setup or automatically install L2TP. For 98, NT and ME, installation requires a download from Microsoft (L2TP/IPsec VPN Client).

For more information, see:

Microsoft L2TP/IPsec VPN Client
Microsoft L2TP/IPsec VPN Client

On Windows 2000, L2TP setup without IPsec requires editing registry:

Disabling IPsec for the Windows 2000 Client

Disabling IPSEC Policy Used with L2TP
Troubleshooting

Description

- I use firewall and I cannot establish L2TP connection
 Make sure UDP connections can pass through both directions between your sites.

- My Windows L2TP/IPsec VPN Client fails to connect to L2TP server with "Error 789" or "Error 781"
 The error messages 789 and 781 occur when IPsec is not configured properly on both ends. See the respective documentation on how to configure IPsec in the Microsoft L2TP/IPsec VPN Client and in the MikroTik RouterOS. If you do not want to use IPsec, it can be easily switched off on the client side. Note: if you are using Windows 2000, you need to edit system registry using regedit.exe. Add the following registry value to HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Rasman\Parameters:

<table>
<thead>
<tr>
<th>Value Name</th>
<th>Data Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProhibitIpSec</td>
<td>REG_DWORD</td>
<td>1</td>
</tr>
</tbody>
</table>

You must restart the Windows 2000 for the changes to take effect

For more information on configuring Windows 2000, see:

- Configuring Cisco IOS and Windows 2000 Clients for L2TP Using Microsoft IAS
- Disabling IPSEC Policy Used with L2TP
- How to Configure a L2TP/IPsec Connection Using Pre-shared Key Authentication
PPPoE

Document revision 1.4 (Fri Apr 30 06:43:11 GMT 2004)

This document applies to MikroTik RouterOS V2.8

Table of Contents

- **Table of Contents**
 - **General Information**
 - **Summary**
 - **Quick Setup Guide**
 - **Specifications**
 - **Related Documents**
 - **Additional Documents**
 - **PPPoE Client Setup**
 - **Description**
 - **Property Description**
 - **Notes**
 - **Example**
 - **Monitoring PPPoE Client**
 - **Property Description**
 - **Example**
 - **PPPoE Server Setup (Access Concentrator)**
 - **Description**
 - **Property Description**
 - **Notes**
 - **Example**
 - **PPPoE Server Users**
 - **Property Description**
 - **Example**
 - **Troubleshooting**
 - **Description**
 - **Application Examples**
 - **PPPoE in a multipoint wireless 802.11 network**

General Information

Summary

The PPPoE (Point to Point Protocol over Ethernet) protocol provides extensive user management, network management and accounting benefits to ISPs and network administrators. Currently PPPoE is used mainly by ISPs to control client connections for xDSL and cable modems as well as plain Ethernet networks. PPPoE is an extension of the standard Point to Point Protocol (PPP). The difference between them is expressed in transport method: PPPoE employs Ethernet instead of modem connection.

Generally speaking, PPPoE is used to hand out IP addresses to clients based on the user (and workstation, if desired) authentication as opposed to workstation only authentication, when static IP
addresses or DHCP are used. It is advised not to use static IP addresses or DHCP on the same interfaces as PPPoE for security reasons.

MikroTik RouterOS can act as a RADIUS client - you can use a RADIUS server to authenticate PPPoE clients and use accounting for them.

A PPPoE connection is composed of a client and an access concentrator (server). The client may be a Windows computer that has the PPPoE client protocol installed. The MikroTik RouterOS supports both - client and access concentrator implementations of PPPoE. The PPPoE client and server work over any Ethernet level interface on the router - wireless 802.11 (Aironet, Cisco, WaveLan, Prism, Atheros), 10/100/1000 Mbit/s Ethernet, RadioLan and EoIP (Ethernet over IP tunnel). No encryption, MPPE 40bit RSA and MPPE 128bit RSA encryption is supported.

Note that when RADIUS server is authenticating a user with CHAP, MS-CHAPv1, MS-CHAPv2, it does not use shared secret, it is used only in authentication reply. So if you have a wrong shared secret, RADIUS server will accept the request. You can use /radius monitor command to see bad-replies parameter. This value should increase whenever a client tries to connect.

Supported connections

- MikroTik RouterOS PPPoE client to any PPPoE server (access concentrator)
- MikroTik RouterOS server (access concentrator) to multiple PPPoE clients (clients are available for almost all operating systems and some routers)

Quick Setup Guide

- To configure MikroTik RouterOS to be a PPPoE client
 1. Just add a pppoe-client:

/iface pppoe-client add name=pppoe-user-mike user=mike password=123 interface=wlan1
 \... service-name=internet disabled=no

- To configure MikroTik RouterOS to be an Access Concentrator (PPPoE Server)
 1. Add an address pool for the clients from 10.1.1.62 to 10.1.1.72, called pppoe-pool:

/ip pool add name="pppoe-pool" ranges=10.1.1.62-10.1.1.72

 2. Add PPP profile, called pppoe-profile where local-address will be the router's address and clients will have an address from pppoe-pool:

/iface pppoe-profile add name="pppoe-profile" local-address=10.1.1.1 remote-address=pppoe-pool

 3. Add a user with username mike and password 123:

/iface pppoe-profile add name=mike password=123 service=pppoe-profile

 4. Now add a pppoe server:

/iface pppoe-server server add service-name=internet interface=wlan1
 \... default-profile=pppoe-profile

Specifications

Packages required: ppp
License required: level1 (limited to 1 interface), level3 (limited to 200 interfaces), level4 (limited to 200 interfaces), level5 (limited to 500 interfaces), level6 (unlimited)
Home menu level: /interface pppoe-server, /interface pppoe-client
Standards and Technologies: PPPoE (RFC 2516)
Hardware usage: PPPoE server may require additional RAM (uses approx. 50kB for each connection) and CPU power. Supports maximum of 10000 connections

Related Documents

- Package Management
- IP Addresses and ARP
- Log Management

Additional Documents

Links for PPPoE documentation:

PPPoE Clients:

- RASPPPoE for Windows 95, 98, 98SE, ME, NT4, 2000, XP, .NET
 http://user.cs.tu-berlin.de/~normanb

PPPoE Client Setup

Home menu level: /interface pppoe-client

Description

The PPPoE client supports high-speed connections. It is fully compatible with the MikroTik PPPoE server (access concentrator).

Note for Windows. Some connection instructions may use the form where the "phone number" us "MikroTik_AC\mt1" to indicate that "MikroTik_AC" is the access concentrator name and "mt1" is the service name.

Property Description

name (name; default: pppoe-out1) - name of the PPPoE interface
interface (name) - interface the PPPoE server can be connected through
mtu (integer; default: 1480) - Maximum Transmission Unit. The optimal value is the MTU of the interface the tunnel is working over decreased by 20 (so, for 1500-byte ethernet link, set the MTU to 1480 to avoid fragmentation of packets)
mru (integer; default: 1480) - Maximum Receive Unit. The optimal value is the MTU of the interface the tunnel is working over decreased by 20 (so, for 1500-byte ethernet link, set the MTU to 1480 to avoid fragmentation of packets)
user (text; default: "") - a user name that is present on the PPPoE server
password (text; default: "") - a user password used to connect the PPPoE server
profile (name) - default profile for the connection
allow (multiple choice: mschap2, mschap1, chap, pap; default: mschap2, mschap1, chap, pap) - the protocol to allow the client to use for authentication
service-name (text; default: "") - specifies the service name set on the access concentrator. Leave it blank unless you have many services and need to specify the one you need to connect to
ac-name (text; default: "") - this may be left blank and the client will connect to any access concentrator that offers the "service" name selected
add-default-route (yes | no; default: no) - whether to add a default route automatically
dial-on-demand (yes | no; default: no) - connects to AC only when outbound traffic is generated and disconnects when there is no traffic for the period set in the idle-timeout value
use-peer-dns (yes | no; default: no) - whether to set the router's default DNS to the PPP peer DNS (i.e. whether to get DNS settings from the peer)

Notes

If there is a default route, add-default-route will not create a new one.

Example

To add and enable PPPoE client on the gig interface connecting to the AC that provides testSN service using user name john with the password password:

```
[admin@RemoteOffice] interface pppoe-client> add interface=gig service-name=testSN user=john password=password disabled=no
[admin@RemoteOffice] interface pppoe-client> print
Flags: X - disabled, R - running
  0 R name="pppoe-out1" mtu=1480 mru=1480 interface=gig user="john" password="password" profile=default service-name="testSN" ac-name=""
    add-default-route=no dial-on-demand=no use-peer-dns=no
```

Monitoring PPPoE Client

Command name: /interface pppoe-client monitor

Property Description

status (text) - status of the client
 • Dialing - attempting to make a connection
 • Verifying password... - connection has been established to the server, password verification in progress
 • Connected - self-explanatory
 • Terminated - interface is not enabled or the other side will not establish a connection uptime (time) - connection time displayed in days, hours, minutes and seconds

encoding (text) - encryption and encoding (if asymmetric, separated with '/') being used in this connection
uptime (time) - connection time displayed in days, hours, minutes and seconds
service-name (text) - name of the service the client is connected to
ac-name (text) - name of the AC the client is connected to
ac-mac (MAC address) - MAC address of the access concentrator (AC) the client is connected to

Example

To monitor the pppoe-out1 connection:

```
[admin@MikroTik] interface pppoe-client> monitor pppoe-out1
status: "connected"
uptime: 10s
encoding: "none"
service-name: "testSN"
ac-name: "10.0.0.1"
ac-mac: 00:C0:DF:07:5E:E6
[admin@MikroTik] interface pppoe-client>
```

PPPoE Server Setup (Access Concentrator)

Home menu level: /interface pppoe-server server

Description

The PPPoE server (access concentrator) supports multiple servers for each interface - with differing service names. Currently the throughput of the PPPoE server has been tested to 160 Mb/s on a Celeron 600 CPU. Using higher speed CPUs, throughput should increase proportionately.

The **access concentrator name** and **PPPoE service name** are used by clients to identity the access concentrator to register with. The **access concentrator name** is the same as the identity of the router displayed before the command prompt. The identity may be set within the /system identity submenu.

PPPoE users are created in /ppp secret menu, see the AAA manual for further information.

Note that if no service name is specified in WindowsXP, it will use only service with no name. So if you want to serve WindowsXP clients, leave your service name empty.

Property Description

service-name (text) - the PPPoE service name

mtu (integer; default: 1480) - Maximum Transmission Unit. The optimal value is the MTU of the interface the tunnel is working over decreased by 20 (so, for 1500-byte Ethernet link, set the MTU to 1480 to avoid fragmentation of packets)

mru (integer; default: 1480) - Maximum Receive Unit. The optimal value is the MTU of the interface the tunnel is working over decreased by 20 (so, for 1500-byte Ethernet link, set the MTU to 1480 to avoid fragmentation of packets)

authentication (multiple choice: mschap2 | mschap1 | chap | pap; default: mschap2, mschap1, chap, pap) - authentication algorithm

keepalive-timeout - defines the time period (in seconds) after which the router is starting to send
keepalive packets every second. If no traffic and no keepalive responses has came for that period of

time (i.e. 2 * keepalive-timeout), not responding client is proclaimed disconnected.

one-session-per-host (yes | no ; default: no) - allow only one session per host (determined by

MAC address). If a host will try to establish a new session, the old one will be closed

default-profile (name ; default: default) - default profile to use

Notes

The default keepalive-timeout value of 10 is OK in most cases. If you set it to 0, the router will not
disconnect clients until they log out or router is restarted. To resolve this problem, the
one-session-per-host property can be used.

Security issue: do not assign an IP address to the interface you will be receiving the PPPoE
requests on.

Example

To add PPPoE server on ether1 interface providing ex service and allowing only one connection
per host:

```
[admin@MikroTik] interface pppoe-server server> add interface=ether1 "
\... service-name=ex one-session-per-host=yes

[admin@MikroTik] interface pppoe-server server> print
Flags: X - disabled
0 X service-name="ex" interface=ether1 mtu=1480 mru=1480
authentication=mschap2,mschap,chap,pap keepalive-timeout=10
one-session-per-host=yes default-profile=default
```

PPPoE Server Users

Home menu level: /interface pppoe-server

Property Description

name (name) - interface name

service-name (name) - name of the service the user is connected to

remote-address (MAC address) - MAC address of the connected client

user (name) - the name of the connected user

encoding (text) - encryption and encoding (if asymmetric, separated with '/') being used in this

connection

uptime - shows how long the client is connected

Example

To view the currently connected users:

```
[admin@MikroTik] interface pppoe-server server> print
Flags: R - running
# NAME SERVICE REMOTE-ADDRESS USER ENCO... UPTIME
0 R <pppoe-ex> ex 00:C0:CA:16:16:A5 ex 12s
```
[admin@MikroTik] interface pppoe-server>

To disconnect the user ex:

[admin@MikroTik] interface pppoe-server> remove [find user=ex]
[admin@MikroTik] interface pppoe-server> print
[admin@MikroTik] interface pppoe-server>

Troubleshooting

Description

• I can connect to my PPPoE server. The ping goes even through it, but I still cannot open web pages
 Make sure that you have specified a valid DNS server in the router (in /ip dns or in /ppp profile the dns-server parameter).

• The PPPoE server shows more than one active user entry for one client, when the clients disconnect, they are still shown and active
 Set the keepalive-timeout parameter (in the PPPoE server configuration) to 10 if you want clients to be considered logged off if they do not respond for 10 seconds.
 Note that if the keepalive-timeout parameter is set to 0 and the only-one parameter (in PPP profile settings) is set to yes then the clients might be able to connect only once. To resolve this problem one-session-per-host parameter in PPPoE server configuration should be set to yes

• I can get through the PPPoE link only small packets (eg. pings)
 You need to change mss of all the packets passing through the PPPoE link to the value of PPPoE link's MTU-40 at least on one of the peers. So for PPPoE link with MTU of 1480:

 [admin@MT] interface pppoe-server server> set 0 max-mtu=1440 max-mru=1440
 [admin@MT] interface pppoe-server server> print
 Flags: X - disabled
 0 service-name="mt" interface=wlan1 max-mtu=1440 max-mru=1440
 authentication=pap,chap,mschap1,mschap2 keepalive-timeout=10
 one-session-per-host=yes max-sessions=0 default-profile=default
 [admin@MT] interface pppoe-server server>

• My windows PPPoE client obtains IP address and default gateway from the MikroTik PPPoE server, but it cannot ping beyond the PPPoE server and use the Internet
 PPPoE server is not bridging the clients. Configure masquerading for the PPPoE client addresses, or make sure you have proper routing for the address space used by the clients, or you enable Proxy-ARP on the Ethernet interface (See the IP Addresses and Address Resolution Protocol (ARP) Manual)

• My Windows XP client cannot connect to the PPPoE server
 You have to specify the "Service Name" in the properties of the XP PPPoE client. If the service name is not set, or it does not match the service name of the MikroTik PPPoE server, you get the "line is busy" errors, or the system shows "verifying password - unknown error"

• I want to have logs for PPPoE connection establishment
 Configure the logging feature under the /system logging facility and enable the PPP type logs
Application Examples

PPPoE in a multipoint wireless 802.11 network

In a wireless network, the PPPoE server may be attached to an Access Point (as well as to a regular station of wireless infrastructure). Either our RouterOS client or Windows PPPoE clients may connect to the Access Point for PPPoE authentication. Further, for RouterOS clients, the radio interface may be set to MTU 1600 so that the PPPoE interface may be set to MTU 1500. This optimizes the transmission of 1500 byte packets and avoids any problems associated with MTUs lower than 1500. It has not been determined how to change the MTU of the Windows wireless interface at this moment.

Let us consider the following setup where the MikroTik Wireless AP offers wireless clients transparent access to the local network with authentication:

Note that you should have Basic + Wireless + Wireless AP licenses for this setup.

First of all, the Prism interface should be configured:

```
[admin@MT_Prism_AP] interface prism> set 0 mode=ap-bridge frequency=2442MHz \ ... ssid=mt disabled=no
[admin@MT_Prism_AP] interface prism> print
Flags: X - disabled, R - running
  0 R name="prism1" mtu=1500 mac-address=00:90:4B:02:17:E2 arp=enabled
    mode=ap-bridge root-ap=00:00:00:00:00:00 frequency=2442MHz ssid="mt"
    default-authentication=yes default-forwarding=yes max-clients=2007
    card-type=generic tx-power=auto supported-rates=1-11 basic-rates=1
    hide-sid=no

[admin@MT_Prism_AP] interface prism> /ip address
```

Now, the Ethernet interface and IP address are to be set:

```
[admin@MT_Prism_AP] ip address> add address=10.0.0.217/24 interface=Local
[admin@MT_Prism_AP] ip address> print
Flags: X - disabled, I - invalid, D - dynamic
  # ADDRESS NETWORK BROADCAST INTERFACE
  0 10.0.0.217/24 10.0.0.0 10.0.0.255 Local

[admin@MT_Prism_AP] ip address> /ip route
[admin@MT_Prism_AP] ip route> add gateway=10.0.0.1
[admin@MT_Prism_AP] ip route> print
Flags: X - disabled, I - invalid, D - dynamic, J - rejected, C - connect, S - static, R - rip, O - ospf, B - bgp
  # DST-ADDRESS G GATEWAY DISTANCE INTERFACE
  0 S 0.0.0.0/0 r 10.0.0.1 1 Local
  1 DC 10.0.0.0/24 r 0.0.0.0 0 Local

[admin@MT_Prism_AP] ip route> /interface ethernet
[admin@MT_Prism_AP] interface ethernet> set Local arp=proxy-arp
[admin@MT_Prism_AP] interface ethernet> print
Flags: X - disabled, R - running
  # NAME MTU MAC-ADDRESS ARP
  0 R Local 1500 00:50:08:00:00:F5 proxy-arp

[admin@MT_Prism_AP] interface ethernet>
```

We should add PPPoE server to the Prism interface:

```
[admin@MT_Prism_AP] interface pppoe-server server> add interface=prism1 \ ... service-name=mt one-session-per-host=yes disabled=no
[admin@MT_Prism_AP] interface pppoe-server server> print
Flags: X - disabled
  0 service-name="mt" interface=prism1 mtu=1480 mru=1480
```
authentication=mschap2,mschap,chap,pap keepalive-timeout=10
one-session-per-host=yes default-profile=default

MSS should be changed for the packets flowing through the PPPoE link:

```
[admin@MT_Prism_AP] ip firewall mangle> add protocol=tcp tcp-options=syn-only \n  \ action=passthrough tcp-mss=1440
[admin@MT_Prism_AP] ip firewall mangle> print
Flags: X - disabled, I - invalid
   0 src-address=0.0.0.0/0:0-65535 in-interface=all
   dst-address=0.0.0.0/0:0-65535 protocol=tcp tcp-options=syn-only
  icmp-options=any:any_flow="" src-mac-address=00:00:00:00:00:00
  limit-count=0 limit-burst=0 limit-time=0s action=passthrough
  mark-flow="" tcp-mss=1440
```

And finally, we can set up PPPoE clients:

```
[admin@MT_Prism_AP] ip pool> add name=pppoe ranges=10.0.0.230-10.0.0.240
[admin@MT_Prism_AP] ip pool> print
   # NAME RANGES
      0 pppoe 10.0.0.230-10.0.0.240
```

```
[admin@MT_Prism_AP] ip pool> /ppp profile
[admin@MT_Prism_AP] ppp profile> set default use-encryption=yes \n  \ local-address=10.0.0.217 remote-address=pppoe
[admin@MT_Prism_AP] ppp profile> print
Flags: * - default
   0 * name="default" local-address=10.0.0.217 remote-address=pppoe
   session-timeout=0s idle-timeout=0s use-compression=no
   use-vj-compression=no use-encryption=yes require-encryption=no
   only-one=no tx-bit-rate=0 rx-bit-rate=0 incoming-filter=""
   outgoing-filter=""
```

```
[admin@MT_Prism_AP] ppp profile> .. secret
[admin@MT_Prism_AP] ppp secret> add name=w password=wkst service=pppoe
[admin@MT_Prism_AP] ppp secret> add name=l password=ltp service=pppoe
[admin@MT_Prism_AP] ppp secret> print
Flags: X - disabled
   # NAME SERVICE CALLER-ID PASSWORD PROFILE
      0 w  pppoe wkst default
      1 l  pppoe ltp default
```

Thus we have completed the configuration and added two users: w and l who are able to connect using PPPoE client software.

Note that Windows XP built-in client supports encryption, but RASPPPOE does not. So, if it is planned not to support Windows clients older than Windows XP, it is recommended to switch `require-encryption` to `yes` value in the `default` profile configuration. In other case, the server will accept clients that do not encrypt data.
PPTP

Document revision 1.3 (Thu May 20 13:41:11 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
General Information
 Summary
 Quick Setup Guide
 Specifications
 Related Documents
 Description
 Additional Documents
PPTP Client Setup
 Property Description
 Example
Monitoring PPTP Client
 Property Description
 Example
PPTP Server Setup
 Description
 Property Description
 Example
PPTP Server Users
 Description
 Property Description
 Example
PPTP Application Examples
 Router-to-Router Secure Tunnel Example
 Connecting a Remote Client via PPTP Tunnel
 PPTP Setup for Windows
 Sample instructions for PPTP (VPN) installation and client setup - Windows 98SE
Troubleshooting
 Description

General Information

Summary

PPTP (Point to Point Tunnel Protocol) supports encrypted tunnels over IP. The MikroTik RouterOS implementation includes support for PPTP client and server.

General applications of PPTP tunnels:

- For secure router-to-router tunnels over the Internet
- To link (bridge) local Intranets or LANs (when EoIP is also used)
For mobile or remote clients to remotely access an Intranet/LAN of a company (see PPTP setup for Windows for more information)

Each PPTP connection is composed of a server and a client. The MikroTik RouterOS may function as a server or client - or, for various configurations, it may be the server for some connections and client for other connections. For example, the client created below could connect to a Windows 2000 server, another MikroTik Router, or another router which supports a PPTP server.

Quick Setup Guide

To make a PPTP tunnel between 2 MikroTik routers with IP addresses **10.5.8.104** (PPTP server) and **10.1.0.172** (PPTP client), follow the next steps.

- **Setup on PPTP server:**
 1. Add a user:

     ```
     [admin@PPTP-Server] ppp secret> add name=jack password=pass \
     \... local-address=10.0.0.1 remote-address=10.0.0.2
     ```
 2. Enable the PPTP server:

     ```
     [admin@PPTP-Server] interface pptp-server server> set enabled=yes
     ```

- **Setup on PPTP client:**
 1. Add the PPTP client:

     ```
     [admin@PPTP-Client] interface pptp-client> add user=jack password=pass \
     \... connect-to=10.5.8.104 disabled=no
     ```

Specifications

Packages required: **ppp**
License required: **level1 (limited to 1 tunnel) , level3 (limited to 200 tunnels) , level5**
Home menu level: **/interface pptp-server , /interface pptp-client**
Standards and Technologies: **PPTP (RFC 2637)**
Hardware usage: **Not significant**

Related Documents

- **Package Management**
- **IP Addresses and ARP**
- **AAA**
- **EoIP**

Description

PPTP is a secure tunnel for transporting IP traffic using PPP. PPTP encapsulates PPP in virtual lines that run over IP. PPTP incorporates PPP and MPPE (Microsoft Point to Point Encryption) to make encrypted links. The purpose of this protocol is to make well-managed secure connections between
routers as well as between routers and PPTP clients (clients are available for and/or included in almost all OSs including Windows).

PPTP includes PPP authentication and accounting for each PPTP connection. Full authentication and accounting of each connection may be done through a RADIUS client or locally.

MPPE 40bit RC4 and MPPE 128bit RC4 encryption are supported.

PPTP traffic uses TCP port 1723 and IP protocol GRE (Generic Routing Encapsulation, IP protocol ID 47), as assigned by the Internet Assigned Numbers Authority (IANA). PPTP can be used with most firewalls and routers by enabling traffic destined for TCP port 1723 and protocol 47 traffic to be routed through the firewall or router.

PPTP connections may be limited or impossible to setup though a masqueraded/NAT IP connection. Please see the Microsoft and RFC links at the end of this section for more information.

Additional Documents

PPTP Client Setup

Home menu level: `/interface pptp-client`

Property Description

- `name` (name; default: `pptp-outN`) - interface name for reference
- `mtu` (integer; default: `1460`) - Maximum Transmission Unit. The optimal value is the MTU of the interface the tunnel is working over decreased by 40 (so, for 1500-byte ethernet link, set the MTU to 1460 to avoid fragmentation of packets)
- `mru` (integer; default: `1460`) - Maximum Receive Unit. The optimal value is the MRU of the interface the tunnel is working over decreased by 40 (so, for 1500-byte ethernet link, set the MRU to 1460 to avoid fragmentation of packets)
- `connect-to` (IP address) - The IP address of the PPTP server to connect to
- `user` (text) - user name to use when logging on to the remote server
- `password` (text; default: "") - user password to use when logging to the remote server
- `profile` (name; default: `default`) - profile to use when connecting to the remote server
- `allow` (multiple choice: `mschap2`, `mschap1`, `chap`, `pap`; default: `mschap2`, `mschap1`, `chap`, `pap`) - the protocol to allow the client to use for authentication
- `add-default-route` (yes | no; default: no) - whether to use the server which this client is connected to as its default router (gateway)

Example

To set up PPTP client named `test2` using username `john` with password `john` to connect to the
10.1.1.12 PPTP server and use it as the default gateway:

[admin@MikroTik] interface pptp-client> add name=test2 connect-to=10.1.1.12 \
... user=john add-default-route=yes password=john
[admin@MikroTik] interface pptp-client> print
Flags: X - disabled, R - running
 0 X name="test2" mtu=1460 mru=1460 connect-to=10.1.1.12 user="john"
 password="john" profile=default add-default-route=yes

[admin@MikroTik] interface pptp-client> enable 0

Monitoring PPTP Client

Command name: /interface pptp-client monitor

Property Description

uptime (time) - connection time displayed in days, hours, minutes and seconds
encoding (text) - encryption and encoding (if asymmetric, separated with '/') being used in this connection
status (text) - status of the client
 • Dialing - attempting to make a connection
 • Verifying password... - connection has been established to the server, password verification in progress
 • Connected - self-explanatory
 • Terminated - interface is not enabled or the other side will not establish a connection
uptime (time) - connection time displayed in days, hours, minutes and seconds

Example

Example of an established connection:

[admin@MikroTik] interface pptp-client> monitor test2
 uptime: 4h35s
 encoding: MPPE 128 bit, stateless
 status: Connected
[admin@MikroTik] interface pptp-client>

PPTP Server Setup

Home menu level: /interface pptp-server server

Description

The PPTP server creates a dynamic interface for each connected PPTP client. The PPTP connection count from clients depends on the license level you have. Level1 license allows 1 PPTP client, Level3 or Level4 licenses up to 200 clients, and Level5 or Level6 licenses do not have PPTP client limitations.

To create PPTP users, you should consult the PPP secret and PPP Profile manuals. It is also possible to use the MikroTik router as a RADIUS client to register the PPTP users, see the manual how to do it.
Property Description

enabled (yes | no; default: no) - defines whether PPTP server is enabled or not

mtu (integer; default: 1460) - Maximum Transmission Unit. The optimal value is the MTU of the interface the tunnel is working over decreased by 40 (so, for 1500-byte ethernet link, set the MTU to 1460 to avoid fragmentation of packets)

mru (integer; default: 1460) - Maximum Receive Unit. The optimal value is the MRU of the interface the tunnel is working over decreased by 40 (so, for 1500-byte ethernet link, set the MRU to 1460 to avoid fragmentation of packets)

authentication (multiple choice: pap | chap | mschap1 | mschap2; default: mschap2) - authentication algorithm

keepalive-timeout (time; default: 30) - defines the time period (in seconds) after which the router is starting to send keepalive packets every second. If no traffic and no keepalive responses has came for that period of time (i.e. $2 \times$ keepalive-timeout), not responding client is proclaimed disconnected

default-profile - default profile to use

Example

To enable PPTP server:

```
[admin@MikroTik] interface pptp-server server> set enabled=yes
[admin@MikroTik] interface pptp-server server> print
  enabled: yes
  mtu: 1460
  mru: 1460
  authentication: mschap2,mschap1
  keepalive-timeout: 30
  default-profile: default
[admin@MikroTik] interface pptp-server server>
```

PPTP Server Users

Home menu level:/interface pptp-server

Description

There are two types of items in PPTP server configuration - static users and dynamic connections. A dynamic connection can be established if the user database or the **default-profile** has its **local-address** and **remote-address** set correctly. When static users are added, the default profile may be left with its default values and only PPP user (in /ppp secret) should be configured. **Note** that in both cases PPP users must be configured properly.

Property Description

name (name) - interface name

user (name) - the name of the user that is configured statically or added dynamically

mtu (integer) - (cannot be set here) client's MTU

client-address (IP address) - shows (cannot be set here) the IP address of the connected client

uptime (time) - shows how long the client is connected
encoding (text) - encryption and encoding (if asymmetric, separated with '/') being used in this connection

Example

To add a static entry for **ex1** user:

```
[admin@MikroTik] interface pptp-server> add user=ex1
[admin@MikroTik] interface pptp-server> print
Flags: X - disabled, D - dynamic, R - running
#   NAME   USER  MTU  CLIENT-ADDRESS  UPTIME ENC...
0   DR  <pptp-ex> ex  1460  10.0.0.202  6m32s none
1   pptp-in1 ex1

```

In this example an already connected user **ex** is shown besides the one we just added.

PPTP Application Examples

Router-to-Router Secure Tunnel Example

The following is an example of connecting two Intranets using an encrypted PPTP tunnel over the Internet.

There are two routers in this example:

- **[HomeOffice]**
 - Interface LocalHomeOffice 10.150.2.254/24
 - Interface ToInternet 192.168.80.1/24

- **[RemoteOffice]**
 - Interface ToInternet 192.168.81.1/24
 - Interface LocalRemoteOffice 10.150.1.254/24

Each router is connected to a different ISP. One router can access another router through the Internet.

On the **Preforma** PPTP server a user must be set up for the client:

```
[admin@HomeOffice] ppp secret> add name=ex service=pptp password=lkjrh
t local-address=10.0.103.1 remote-address=10.0.103.2
[admin@HomeOffice] ppp secret> print detail
Flags: X - disabled
0   name="ex" service=pptp caller-id="" password="lkjrh" profile=default
local-address=10.0.103.1 remote-address=10.0.103.2 routes=""

```

Then the user should be added in the PPTP server list:

```
[admin@HomeOffice] interface pptp-server> add user=ex
[admin@HomeOffice] interface pptp-server> print
Flags: X - disabled, D - dynamic, R - running
#   NAME   USER  MTU  CLIENT-ADDRESS  UPTIME ENC...
0   pptp-in1 ex

```

And finally, the server must be enabled:
Add a PPTP client to the RemoteOffice router:

[admin@RemoteOffice] interface pptp-client> add connect-to=192.168.80.1 user=ex \ ... password=lkjrhht disabled=no
[admin@RemoteOffice] interface pptp-client> print
Flags: X - disabled, R - running
 0 R name="pptp-out1" mtu=1460 mru=1460 connect-to=192.168.80.1 user="ex"
 password="lkjrht" profile=default add-default-route=no

Thus, a PPTP tunnel is created between the routers. This tunnel is like an Ethernet point-to-point connection between the routers with IP addresses 10.0.103.1 and 10.0.103.2 at each router. It enables 'direct' communication between the routers over third party networks.

To route the local Intranets over the PPTP tunnel you need to add these routes:

[admin@HomeOffice] > ip route add dst-address 10.150.1.0/24 gateway 10.0.103.2
[admin@RemoteOffice] > ip route add dst-address 10.150.2.0/24 gateway 10.0.103.1

On the PPTP server it can alternatively be done using routes parameter of the user configuration:

[admin@HomeOffice] ppp secret> print detail
Flags: X - disabled
 0 name="ex" service=pptp caller-id="" password="lkjrht" profile=default
 local-address=10.0.103.1 remote-address=10.0.103.2 routes=""
[admin@HomeOffice] ppp secret> set 0 routes="10.150.1.0/24 10.0.103.2 1"
[admin@HomeOffice] ppp secret> print detail
Flags: X - disabled
 0 name="ex" service=pptp caller-id="" password="lkjrht" profile=default
 local-address=10.0.103.1 remote-address=10.0.103.2
 routes="10.150.1.0/24 10.0.103.2 1"

Test the PPTP tunnel connection:

[admin@RemoteOffice]> /ping 10.0.103.1
10.0.103.1 pong: ttl=255 time=3 ms
10.0.103.1 pong: ttl=255 time=3 ms
10.0.103.1 pong: ttl=255 time=3 ms
ping interrupted
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 3/3.0/3 ms

Test the connection through the PPTP tunnel to the LocalHomeOffice interface:

[admin@RemoteOffice]> /ping 10.150.2.254
10.150.2.254 pong: ttl=255 time=3 ms
10.150.2.254 pong: ttl=255 time=3 ms
10.150.2.254 pong: ttl=255 time=3 ms
ping interrupted
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 3/3.0/3 ms

To bridge a LAN over this secure tunnel, please see the example in the 'EoIP' section of the manual.
To set the maximum speed for traffic over this tunnel, please consult the 'Queues' section.
Connecting a Remote Client via PPTP Tunnel

The following example shows how to connect a computer to a remote office network over PPTP encrypted tunnel giving that computer an IP address from the same network as the remote office has (without need of bridging over EoIP tunnels)

Please, consult the respective manual on how to set up a PPTP client with the software You are using.

The router in this example:

- **[RemoteOffice]**
 - Interface ToInternet 192.168.81.1/24
 - Interface Office 10.150.1.254/24

The client computer can access the router through the Internet.

On the PPTP server a user must be set up for the client:

```
[admin@RemoteOffice] ppp secret> add name=ex service=pptp password=lkjrh
local-address=10.150.1.254 remote-address=10.150.1.2
[admin@RemoteOffice] ppp secret> print detail
Flags: X - disabled
0  name="ex" service=pptp caller-id="" password="lkjrht" profile=default
   local-address=10.150.1.254 remote-address=10.150.1.2 routes=""
[admin@RemoteOffice] ppp secret>
```

Then the user should be added in the PPTP server list:

```
[admin@RemoteOffice] interface pptp-server> add name=FromLaptop user=ex
[admin@RemoteOffice] interface pptp-server> print
Flags: X - disabled, D - dynamic, R - running
#  NAME USER MTU CLIENT-ADDRESS UPTIME ENC...
0  FromLaptop  ex
[admin@RemoteOffice] interface pptp-server>
```

And the server must be enabled:

```
[admin@RemoteOffice] interface pptp-server server> set enabled=yes
[admin@RemoteOffice] interface pptp-server server> print
 enabled: yes
 mtu: 1460
 mrutime: 1460
 authentication: mschap2
 default-profile: default
[admin@RemoteOffice] interface pptp-server server>
```

Finally, the proxy APR must be enabled on the 'Office' interface:

```
[admin@RemoteOffice] interface ethernet> set Office arp=proxy-arp
[admin@RemoteOffice] interface ethernet> print
Flags: X - disabled, R - running
 #  NAME MTU MAC-ADDRESS ARP
 0  R ToInternet 1500 00:30:4F:0B:7B:C1 enabled
 1  R Office 1500 00:30:4F:06:62:12 proxy-arp
[admin@RemoteOffice] interface ethernet>
```

PPTP Setup for Windows

Microsoft provides PPTP client support for Windows NT, 98, 98SE, ME, 2000 and XP. Windows 98SE, ME, 2000 and XP include support in the Windows setup or automatically install PPTP. For
95, NT, and 98, installation requires a download from Microsoft. Many ISPs have made help pages to assist clients with Windows PPTP installation.

- **Step-by-step instructions how to setup PPTP on Windows 2000**
- **PPTP setup for Windows95**

Sample instructions for PPTP (VPN) installation and client setup - Windows 98SE

If the VPN (PPTP) support is installed, select 'Dial-up Networking' and 'Create a new connection'. The option to create a 'VPN' should be selected. If there is no 'VPN' options, then follow the installation instructions below. When asked for the 'Host name or IP address of the VPN server', type the IP address of the router. Double-click on the 'new' icon and type the correct user name and password (must also be in the user database on the router or RADIUS server used for authentication).

The setup of the connections takes nine seconds after selection the 'connect' button. It is suggested that the connection properties be edited so that 'NetBEUI', 'IPX/SPX compatible', and 'Log on to network' are unselected. The setup time for the connection will then be two seconds after the 'connect' button is selected.

To install the 'Virtual Private Networking' support for Windows 98SE, go to the 'Setting' menu from the main 'Start' menu. Select 'Control Panel', select 'Add/Remove Program', select the 'Windows setup' tab, select the 'Communications' software for installation and 'Details'. Go to the bottom of the list of software and select 'Virtual Private Networking' to be installed.

Troubleshooting

Description

- **I use firewall and I cannot establish PPTP connection**
 Make sure the TCP connections to port 1723 can pass through both directions between your sites. Also, IP protocol 47 should be passed through
VLAN Interface

Document revision 1.1 (Fri Mar 05 08:24:34 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
General Information
 Summary
 Specifications
 Related Documents
 Description
 Additional Documents
VLAN Setup
 Property Description
 Notes
 Example
Application Example
 VLAN example on MikroTik Routers

General Information

Summary

VLAN is an implementation of the 802.1Q VLAN protocol for MikroTik RouterOS. It allows you to have multiple Virtual LANs on a single ethernet cable, giving the ability to segregate LANs efficiently. It supports up to 250 vlan interfaces per ethernet device. Many routers, including Cisco and Linux based, and many Layer 2 switches also support it.

A VLAN is a logical grouping that allows end users to communicate as if they were physically connected to a single isolated LAN, independent of the physical configuration of the network. VLAN support adds a new dimension of security and cost savings permitting the sharing of a physical network while logically maintaining separation among unrelated users.

Specifications

Packages required: **system**
License required: **level1 (limited to 1 vlan) , level3**
Home menu level: **/interface vlan**
Standards and Technologies: **VLAN (IEEE 802.1Q)**
Hardware usage: **Not significant**

Related Documents

- **Package Management**
- **IP Addresses and ARP**
Description

VLANs are simply a way of grouping a set of switch ports together so that they form a logical network, separate from any other such group. Within a single switch this is straightforward local configuration. When the VLAN extends over more than one switch, the inter-switch links have to become trunks, on which packets are tagged to indicate which VLAN they belong to.

You can use MikroTik RouterOS (as well as Cisco IOS and Linux) to mark these packets as well as to accept and route marked ones.

As VLAN works on OSI Layer 2, it can be used just as any other network interface without any restrictions. And VLAN successfully passes through Ethernet bridges (for MikroTik RouterOS bridges you should set `forward-protocols` to `ip, arp` and `other`; for other bridges there should be analogical settings).

Currently Supported Interfaces

This is a list of network interfaces on which VLAN was tested and worked. Note that there might be many other interfaces that support VLAN, but they just were not checked.

- Realtek 8139
- Intel PRO/100
- Intel PRO1000 server adapter
- National Semiconductor DP83815/DP83816 based cards (RouterBOARD200 onboard Ethernet, RouterBOARD 24 card)
- VIA VT6105M based cards (RouterBOARD 44 card)
- VIA VT6105
- VIA VT6102 (VIA EPIA onboard Ethernet)

This is a list of network interfaces on which VLAN was tested and worked, but **WITHOUT LARGE PACKET (>1496 bytes) SUPPORT**:

- 3Com 3c59x PCI
- DEC 21140 (tulip)

Additional Documents

- http://www.cisco.com/univercd/cc/td/doc/product/software/ios121/121newft/121t/121t3/dtbridge.htm#xtocid114533

VLAN Setup

Home menu level: `/interface vlan`

Property Description
name (name) - interface name for reference

mtu (integer; default: **1500**) - Maximum Transmission Unit

interface (name) - physical interface to the network where are VLANs

arp (disabled | enabled | proxy-arp | reply-only; default: enabled) - Address Resolution Protocol setting
- **disabled** - the interface will not use ARP protocol
- **enabled** - the interface will use ARP protocol
- **proxy-arp** - the interface will be an ARP proxy
- **reply-only** - the interface will only reply to the requests originated to its own IP addresses, but neighbor MAC addresses will be gathered from /ip arp statically set table only

vlan-id (integer; default: **1**) - Virtual LAN identifier or tag that is used to distinguish VLANs. Must be equal for all computers in one VLAN.

Notes

MTU should be set to 1500 bytes as on Ethernet interfaces. But this may not work with some Ethernet cards that do not support receiving/transmitting of full size Ethernet packets with VLAN header added (1500 bytes data + 4 bytes VLAN header + 14 bytes Ethernet header). In this situation MTU 1496 can be used, but note that this will cause packet fragmentation if larger packets have to be sent over interface. At the same time remember that MTU 1496 may cause problems if path MTU discovery is not working properly between source and destination.

Example

To add and enable a VLAN interface named test with **vlan-id=1** on interface **ether1**:

```
[admin@MikroTik] interface vlan> add name=test vlan-id=1 interface=ether1
[admin@MikroTik] interface vlan> print
Flags: X - disabled, R - running
  #   NAME  MTU  ARP  VLAN-ID  INTERFACE
  0 X      test 1500 enabled 1  ether1
[admin@MikroTik] interface vlan> enable 0
[admin@MikroTik] interface vlan> print
Flags: X - disabled, R - running
  #   NAME  MTU  ARP  VLAN-ID  INTERFACE
  0 R      test 1500 enabled 1  ether1
[admin@MikroTik] interface vlan>
```

Application Example

VLAN example on MikroTik Routers

Let us assume that we have two or more MikroTik RouterOS routers connected with a hub. Interfaces to the physical network, where VLAN is to be created is **ether1** for all of them (it is needed only for example simplification, it is NOT a must).

To connect computers through VLAN they must be connected physically and unique IP addresses should be assigned them so that they could ping each other. Then on each of them the VLAN interface should be created:

```
[admin@MikroTik] interface vlan> add name=test vlan-id=32 interface=ether1
```

Page 292 of 521

Copyright 1999-2005, MikroTik. All rights reserved. Mikrotik, RouterOS and RouterBOARD are trademarks of Mikrotikls SIA. Other trademarks and registered trademarks mentioned herein are properties of their respective owners.
If the interfaces were successfully created, both of them will be **running**. If computers are connected incorrectly (through network device that does not retransmit or forward VLAN packets), either both or one of the interfaces will not be **running**.

When the interface is running, IP addresses can be assigned to the VLAN interfaces.

On the Router 1:

```
[admin@MikroTik] ip address> add address=10.10.10.1/24 interface=test
[admin@MikroTik] ip address> print
```

Flags: X - disabled, I - invalid, D - dynamic

<table>
<thead>
<tr>
<th>#</th>
<th>ADDRESS</th>
<th>NETWORK</th>
<th>BROADCAST</th>
<th>INTERFACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10.0.0.204/24</td>
<td>10.0.0.0</td>
<td>10.0.0.255</td>
<td>ether1</td>
</tr>
<tr>
<td>1</td>
<td>10.20.0.1/24</td>
<td>10.20.0.0</td>
<td>10.20.0.255</td>
<td>pc1</td>
</tr>
<tr>
<td>2</td>
<td>10.10.10.1/24</td>
<td>10.10.10.0</td>
<td>10.10.10.255</td>
<td>test</td>
</tr>
</tbody>
</table>

On the Router 2:

```
[admin@MikroTik] ip address> add address=10.10.10.2/24 interface=test
[admin@MikroTik] ip address> print
```

Flags: X - disabled, I - invalid, D - dynamic

<table>
<thead>
<tr>
<th>#</th>
<th>ADDRESS</th>
<th>NETWORK</th>
<th>BROADCAST</th>
<th>INTERFACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10.0.0.201/24</td>
<td>10.0.0.0</td>
<td>10.0.0.255</td>
<td>ether1</td>
</tr>
<tr>
<td>1</td>
<td>10.10.10.2/24</td>
<td>10.10.10.0</td>
<td>10.10.10.255</td>
<td>test</td>
</tr>
</tbody>
</table>

If it is set up correctly, then it is possible to ping Router 2 from Router 1 and vice versa:

```
[admin@MikroTik] ip address> /ping 10.10.10.1
10.10.10.1 64 byte pong: ttl=255 time=3 ms
10.10.10.1 64 byte pong: ttl=255 time=4 ms
10.10.10.1 64 byte pong: ttl=255 time=10 ms
10.10.10.1 64 byte pong: ttl=255 time=5 ms
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max = 3/10.5/10 ms
[admin@MikroTik] ip address> /ping 10.10.10.2
10.10.10.2 64 byte pong: ttl=255 time=10 ms
10.10.10.2 64 byte pong: ttl=255 time=11 ms
10.10.10.2 64 byte pong: ttl=255 time=10 ms
10.10.10.2 64 byte pong: ttl=255 time=13 ms
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max = 10/11/13 ms
```
Traffic Flow

Document revision 1.0 (30-jun-2005)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
General Information
Description

General Information

Description

Traffic-Flow
SNMP Service

Document revision 1.7 (Wen Sep 15 11:00:38 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
General Information
 Summary
 Specifications
 Related Documents
 Additional Documents
SNMP Setup
 Description
 Property Description
 Example
SNMP Communities
 Description
 Property Description
 Example
Available OIDs
 Description
 Example
Available MIBs
 Description
Tools for SNMP Data Collection and Analysis
 Description
 An example of using MRTG with MikroTik SNMP

General Information

Summary

SNMP is an application layer protocol. It is called simple because it works that way - the management station makes a request, and the managed device (SNMP agent) replies to this request. In SNMPv1 there are three main actions - Get, Set, and Trap. RouterOS supports only Get, which means that you can use this implementation only for network monitoring.

Hosts receive SNMP generated messages on UDP port 161 (except the trap messages, which are received on UDP port 162).

The MikroTik RouterOS supports:

- SNMPv1 only
- Read-only access is provided to the NMS (network management system)
- User defined communities are supported
- Get and GetNext actions
• No Set support
• No Trap support

Specifications
Packages required: system, ppp (optional)
License required: level1
Home menu level: /snmp
Standards and Technologies: SNMP (RFC 1157)
Hardware usage: Not significant

Related Documents

• Package Management
• IP Addresses and ARP

Additional Documents

• http://www.ietf.org/rfc/rfc1157.txt
• http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/snmp.htm
• http://www.david-guerrero.com/papers/snmp/

SNMP Setup
Home menu level: /snmp

Description
This section shows you how to enable the SNMP agent on MikroTik RouterOS.

Property Description

enabled (yes | no) - whether the SNMP service is enabled
contact (text ; default: '') - contact information for the NMS
location (text ; default: '') - location information for the NMS

Example

To enable the service, specifying some info:

[admin@MikroTik] snmp> set contact="admin@riga-2" location="3rd floor" enabled="yes"
[admin@MikroTik] snmp> print
 enabled: yes
 contact: admin@riga-2
 location: 3rd floor
[admin@MikroTik] snmp>

SNMP Communities
Home menu level: `/snmp community`

Description

The community name is a value in SNMPv1 header. It is like a 'username' for connecting to the SNMP agent. The default community for SNMP is **public**.

Property Description

- **name**: (name) - community name
- **address**: (IP address/mask; default: 0.0.0.0/0) - allow requests only from these addresses
 - 0.0.0.0/0 - allow access for any address
- **read-access**: (yes | no; default: yes) - whether the read access is enabled for the community

Example

To view existing communities:

```
[admin@MikroTik] snmp community> print
# NAME ADDRESS READ-ACCESS
0 public 0.0.0.0/0 yes
```

You can disable read access for the community **public**:

```
[admin@MikroTik] snmp community> set 0 read-access=no
[admin@MikroTik] snmp community> print
# NAME ADDRESS READ-ACCESS
0 public 0.0.0.0/0 no
```

To add the community called **communa**, that is only accessible from the **159.148.116.0/24** network:

Available OIDs

Description

You can use the SNMP protocol to get statistics from the router in these submenus:

- `/interface`
- `/interface pc`
- `/interface wavelan`
- `/interface wireless`
- `/interface wireless registration-table`
- `/queue simple`
- `/queue tree`
- `/system identity`
• /system resource

Example

To see available OID values, just type `print oid`. For example, to see available OIDs in `/system` resource:

```
[admin@motors] system resource> print oid
  uptime: .1.3.6.1.2.1.1.3.0
  total-hdd-space: .1.3.6.1.2.1.25.2.3.1.5.1
  used-hdd-space: .1.3.6.1.2.1.25.2.3.1.6.1
  total-memory: .1.3.6.1.2.1.25.2.3.1.5.2
  used-memory: .1.3.6.1.2.1.25.2.3.1.6.2
  cpu-load: .1.3.6.1.2.1.25.3.1.2.1
[admin@motors] system resource>
```

Available MIBs

Description

You can download MikroTik MIB file

MikroTik RouterOS OID: enterprises.14988.1

RFC1493

dot1dBridge.dot1dBase.dot1dBaseBridgeAddress
dot1dBridge.dot1dStp.dot1dStpProtocolSpecification
dot1dBridge.dot1dStp.dot1dStpPriority
dot1dBridge.dot1dTp.dot1dTpFdbTable.dot1dTpFdbEntry.dot1dTpFdbAddress
dot1dBridge.dot1dTp.dot1dTpFdbTable.dot1dTpFdbEntry.dot1dTpFdbPort
dot1dBridge.dot1dTp.dot1dTpFdbTable.dot1dTpFdbEntry.dot1dTpFdbStatus

RFC2863

ifMIB.ifMIBObjects.ifXTable.ifXEntry.ifName
ifMIB.ifMIBObjects.ifXTable.ifXEntry.ifHCInOctets
ifMIB.ifMIBObjects.ifXTable.ifXEntry.ifHCInUcastPkts
ifMIB.ifMIBObjects.ifXTable.ifXEntry.ifHCOutOctets
ifMIB.ifMIBObjects.ifXTable.ifXEntry.ifHCOutUcastPkts

RFC1213

interfaces.ifNumber
interfaces.ifTable.ifEntry.ifIndex
interfaces.ifTable.ifEntry.ifDescr
interfaces.ifTable.ifEntry.ifType
interfaces.ifTable.ifEntry.ifMtu
interfaces.ifTable.ifEntry.ifSpeed
interfaces.ifTable.ifEntry.ifPhysAddress
interfaces.ifTable.ifEntry.ifAdminStatus
interfaces.ifTable.ifEntry.ifOperStatus
interfaces.ifTable.ifEntry.ifLastChange
interfaces.ifTable.ifEntry.ifInOctets
interfaces.ifTable.ifEntry.ifInUCastPkts
interfaces.ifTable.ifEntry.ifInNUcastPkts
interfaces.ifTable.ifEntry.ifInDiscards
interfaces.ifTable.ifEntry.ifInErrors
interfaces.ifTable.ifEntry.ifInUnknownProtos
interfaces.ifTable.ifEntry.ifOutOctets
interfaces.ifTable.ifEntry.ifOutUCastPkts
interfaces.ifTable.ifEntry.ifOutNUcastPkts
interfaces.ifTable.ifEntry.ifOutDiscards
interfaces.ifTable.ifEntry.ifOutErrors
interfaces.ifTable.ifEntry.ifOutQLen

RFC2011

ip.ipForwarding
ip.ipDefaultTTL
ip.ipAddrTable.ipAddrEntry.ipAdEntAddr
ip.ipAddrTable.ipAddrEntry.ipAdEntIfIndex
ip.ipAddrTable.ipAddrEntry.ipAdEntNetMask
ip.ipAddrTable.ipAddrEntry.ipAdEntBcastAddr
ip.ipAddrTable.ipAddrEntry.ipAdEntReasmMaxSize
ip.ipNetToMediaTable.ipNetToMediaEntry.ipNetToMediaIfIndex
ip.ipNetToMediaTable.ipNetToMediaEntry.ipNetToMediaPhysAddress
ip.ipNetToMediaTable.ipNetToMediaEntry.ipNetToMediaNetAddress
ip.ipNetToMediaTable.ipNetToMediaEntry.ipNetToMediaType

RFC2096

ip.ipForward.ipCidrRouteTable.ipCidrRouteEntry.ipCidrRouteDest
ip.ipForward.ipCidrRouteTable.ipCidrRouteEntry.ipCidrRouteMask
ip.ipForward.ipCidrRouteTable.ipCidrRouteEntry.ipCidrRouteTos
ip.ipForward.ipCidrRouteTable.ipCidrRouteEntry.ipCidrRouteNextHop
ip.ipForward.ipCidrRouteTable.ipCidrRouteEntry.ipCidrRouteIfIndex
ip.ipForward.ipCidrRouteTable.ipCidrRouteEntry.ipCidrRouteType
ip.ipForward.ipCidrRouteTable.ipCidrRouteEntry.ipCidrRouteProto
ip.ipForward.ipCidrRouteTable.ipCidrRouteEntry.ipCidrRouteAge
ip.ipForward.ipCidrRouteTable.ipCidrRouteEntry.ipCidrRouteInfo
ip.ipForward.ipCidrRouteTable.ipCidrRouteEntry.ipCidrRouteNextHopAS
ip.ipForward.ipCidrRouteTable.ipCidrRouteEntry.ipCidrRouteMetric1
ip.ipForward.ipCidrRouteTable.ipCidrRouteEntry.ipCidrRouteMetric2
ip.ipForward.ipCidrRouteTable.ipCidrRouteEntry.ipCidrRouteMetric3
ip.ipForward.ipCidrRouteTable.ipCidrRouteEntry.ipCidrRouteMetric4
ip.ipForward.ipCidrRouteTable.ipCidrRouteEntry.ipCidrRouteMetric5
ip.ipForward.ipCidrRouteTable.ipCidrRouteEntry.ipCidrRouteStatus

Note that obsolete ip.ipRouteTable is also supported

RFC1213

system.sysDescr
system.sysObjectID
system.sysUpTime
system.sysContact
system.sysName
system.sysLocation
system.sysServices

RFC2790
host.hrSystem.hrSystemUptime
host.hrSystem.hrSystemDate
host.hrStorage.hrMemorySize
host.hrStorage.hrStorageTable.hrStorageEntry.hrStorageIndex
host.hrStorage.hrStorageTable.hrStorageEntry.hrStorageType
host.hrStorage.hrStorageTable.hrStorageEntry.hrStorageDescr
host.hrStorage.hrStorageTable.hrStorageEntry.hrStorageAllocationUnits
host.hrStorage.hrStorageTable.hrStorageEntry.hrStorageSize
host.hrStorage.hrStorageTable.hrStorageEntry.hrStorageUsed

CISCO-AAA-SESSION-MIB

Note that this MIB is supported only when `ppp` package is installed. It reports both `ppp` and `hotspot` active users

`enterprises.cisco.ciscoMgmt.ciscoAAASessionMIB.casnMIBObjects.casnActive.casnActiveTableEntries`

`enterprises.cisco.ciscoMgmt.ciscoAAASessionMIB.casnMIBObjects.casnActive.casnActiveTable.casnActiveEntry.casnSessionId`

`enterprises.cisco.ciscoMgmt.ciscoAAASessionMIB.casnMIBObjects.casnActive.casnActiveTable.casnActiveEntry.casnUserId`

`enterprises.cisco.ciscoMgmt.ciscoAAASessionMIB.casnMIBObjects.casnActive.casnActiveTable.casnActiveEntry.casnIpAddr`

RFC2863

`ifMIB.ifMIBObjects.ifXTable.ifXEntry.ifInMulticastPkts`

`ifMIB.ifMIBObjects.ifXTable.ifXEntry.ifInBroadcastPkts`

`ifMIB.ifMIBObjects.ifXTable.ifXEntry.ifOutMulticastPkts`

`ifMIB.ifMIBObjects.ifXTable.ifXEntry.ifOutBroadcastPkts`

`ifMIB.ifMIBObjects.ifXTable.ifXEntry.ifHCInMulticastPkts`

`ifMIB.ifMIBObjects.ifXTable.ifXEntry.ifHCInBroadcastPkts`

`ifMIB.ifMIBObjects.ifXTable.ifXEntry.ifHCOutMulticastPkts`

`ifMIB.ifMIBObjects.ifXTable.ifXEntry.ifHCOutBroadcastPkts`

`ifMIB.ifMIBObjects.ifXTable.ifXEntry.ifHighSpeed`

RFC2790

`host.hrStorage.hrStorageTable.hrStorageEntry.hrStorageAllocationFailures`

Tools for SNMP Data Collection and Analysis
Description

MRTG (Multi Router Traffic Grapher) is the most commonly used SNMP monitor. For further information, see this link: http://people.ee.ethz.ch/~oetiker/webtools/mrtg/

An example of using MRTG with MikroTik SNMP

Here is an example configuration file for MRTG to monitor a network interface traffic on Mikrotik RouterOS. This is only an example file.

```
# Multi Router Traffic Grapher -- Sample Configuration File

# Global configuration
WorkDir: /var/www/mrtg
WriteExpires: Yes
RunAsDaemon: Yes
Interval: 6
Refresh: 300

# System: RouterBOARD
# Description: RouterOS v2.8
# Contact: support@mikrotik.com
# Location: Mikrotik main office

### Interface 'RemOffice'

Target[RouterBOARD]: 1.3.6.1.2.1.2.2.1.10.8&1.3.6.1.2.1.2.2.1.16.8:public@1.1.1.3
#SetEnv[RouterBOARD]: MRTG_INT_IP="1.1.1.3" MRTG_INT_DESCR="ether1"
MaxBytes[RouterBOARD]: 1250000
Title[RouterBOARD]: Traffic Analysis for RouterBOARD(1)
PageTop[RouterBOARD]: <H1>Traffic Analysis for RouterBOARD(1)</H1>

<TABLE>
  <TR><TD>System:</TD> <TD>RouterBOARD</TD></TR>
  <TR><TD>Maintainer:</TD> <TD>MicroTik Support</TD></TR>
  <TR><TD>Description:</TD><TD>An Embedded Board</TD></TR>
  <TR><TD>ifType:</TD> <TD>ethernetCSMACD(6)</TD></TR>
  <TR><TD>ifName:</TD> <TD>RemOffice</TD></TR>
  <TR><TD>Max Speed:</TD> <TD>1250.0 kBytes/s</TD></TR>
  <TR><TD>IP:</TD> <TD>10.10.2.1</TD></TR>
</TABLE>

### Queue 'queue1'

Target[RouterBOARD_queue]: 1.3.6.1.2.1.1.14988.1.1.2.1.1.8.141.3.6.1.4.1.14988.1.1.2.1.1.9.1:public@1.1.1.3
#SetEnv[RouterBOARD_queue]: MRTG_INT_IP="1.1.1.3" MRTG_INT_DESCR="ether1"
MaxBytes[RouterBOARD_queue]: 100000
```
<TABLE>
 <TR>
 <TD>System:</TD> <TD>RouterBOARD</TD>
 </TR>
 <TR>
 <TD>Maintainer:</TD> <TD>MicroTik Support</TD>
 </TR>
 <TR>
 <TD>Description:</TD> <TD>An Embedded Board</TD>
 </TR>
 <TR>
 <TD>ifType:</TD> <TD>ethernetCSMACD(6)</TD>
 </TR>
 <TR>
 <TD>ifName:</TD> <TD>RemOffice</TD>
 </TR>
 <TR>
 <TD>queueName:</TD> <TD>queue1</TD>
 </TR>
 <TR>
 <TD>Max Speed:</TD> <TD>64.0 kBytes/s</TD>
 </TR>
 <TR>
 <TD>IP:</TD> <TD>10.10.2.1</TD>
 </TR>
</TABLE>

The output page of MRTG (interface part) should look like this: Example MRTG Output
For more information read the MRTG documentation: Configuration Reference
Log Management

Document revision 2.3 (Mon Jul 19 07:23:35 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
 Summary
 Specifications
 Related Documents
 Description
 General Settings
 Property Description
 Example
 Log Classification
 Property Description
 Notes
 Example
 Log Messages
 Description
 Property Description
 Notes
 Example

General Information

Summary

Various system events and status information can be logged. Logs can be saved in a file on the router, or sent to a remote server running a syslog daemon. MikroTik provides a shareware Windows Syslog daemon, which can be downloaded from www.mikrotik.com

Specifications

Packages required: system
License required: level1
Home menu level: /system logging, /log
Standards and Technologies: Syslog
Hardware usage: Not significant

Related Documents

 Package Management

Description

The logging feature sends all of your actions on the router to a log file or to a logging daemon.
Router has several global configuration settings that are applied to logging. Logs have different facilities. Logs from each facility can be configured to be discarded, logged locally or remotely. Log files can be stored in memory (default; logs are lost on reboot) or on hard drive (not enabled by default as is harmful for flash disks).

General Settings

Home menu level: `/system logging`

Property Description

default-remote-address (*IP address*; default: **0.0.0.0**) - remote log server IP address. Used when remote logging is enabled but no IP address of the remote server is specified

default-remote-port (*integer*; default: **0**) - remote log server UDP port. Used when remote logging is enabled but no UDP port of the remote server is specified

disk-buffer-lines (*integer*; default: **100**) - number of lines kept on hard drive

memory-buffer-lines (*integer*; default: **100**) - number of lines kept in memory

Example

To use the **10.5.13.11** host, listening on **514** port, as the default remote system-log server:

```
[admin@MikroTik] system logging> set default-remote-address=10.5.13.11
default-remote-port=514
[admin@MikroTik] system logging> print
default-remote-address: 10.5.13.11
default-remote-port: 514
disk-buffer-lines: 100
memory-buffer-lines: 100
[admin@MikroTik] system logging>
```

Log Classification

Home menu level: `/system logging facility`

Property Description

echo (*yes* | **no**; default: **no**) - whether to echo the message of this type to the active (logged-in) consoles

facility (*name*) - name of the log group, message type

local (*disk* | **memory** | **none**; default: **memory**) - how to treat local logs
 - **disk** - logs are saved to hard drive
 - **memory** - logs are saved to local buffer. They can be viewed using the '/log print' command
 - **none** - logs from this source are discarded

prefix (*text*; default: **""**) - local log prefix

remote (*none* | **syslog**; default: **none**) - how to treat logs that are sent to remote host
 - **none** - do not send logs to a remote host
 - **syslog** - send logs to remote syslog daemon
remote-address (IP address ; default: "") - remote log server's IP address. Used when logging type is remote. If not set, default log server's IP address is used

remote-port (integer ; default: 0) - remote log server UDP port. Used when logging type is remote. If not set, default log server UDP port is used

Notes

You cannot add, delete or rename the facilities: they are added and removed with the packages they are associated with.

System-Echo facility has its default echo property set to yes.

Example

To force the router to send Firewall-Log to the 10.5.13.11 server:

```
[admin@MikroTik] system logging facility> set Firewall-Log remote=syslog \
\... remote-address=10.5.13.11 remote-port=514
[admin@MikroTik] system logging facility> print
```

<table>
<thead>
<tr>
<th>FACILITY</th>
<th>LOCAL</th>
<th>REMOTE</th>
<th>PREFIX</th>
<th>REMOTE-ADDRESS</th>
<th>REMOTE-PORT</th>
<th>ECHO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Firewall-Log</td>
<td>memory</td>
<td>syslog</td>
<td></td>
<td>10.5.13.11</td>
<td>514</td>
<td>no</td>
</tr>
<tr>
<td>1 PPP-Account</td>
<td>memory</td>
<td>none</td>
<td></td>
<td>0.0.0.0</td>
<td>0</td>
<td>no</td>
</tr>
<tr>
<td>2 PPP-Info</td>
<td>memory</td>
<td>none</td>
<td></td>
<td>0.0.0.0</td>
<td>0</td>
<td>no</td>
</tr>
<tr>
<td>3 PPP-Error</td>
<td>memory</td>
<td>none</td>
<td></td>
<td>0.0.0.0</td>
<td>0</td>
<td>no</td>
</tr>
<tr>
<td>4 System-Info</td>
<td>memory</td>
<td>none</td>
<td></td>
<td>0.0.0.0</td>
<td>0</td>
<td>no</td>
</tr>
<tr>
<td>5 System-Error</td>
<td>memory</td>
<td>none</td>
<td></td>
<td>0.0.0.0</td>
<td>0</td>
<td>no</td>
</tr>
<tr>
<td>6 System-Warning</td>
<td>memory</td>
<td>none</td>
<td></td>
<td>0.0.0.0</td>
<td>0</td>
<td>no</td>
</tr>
<tr>
<td>7 Telephony-Info</td>
<td>memory</td>
<td>none</td>
<td></td>
<td>0.0.0.0</td>
<td>0</td>
<td>no</td>
</tr>
<tr>
<td>8 Telephony-Error</td>
<td>memory</td>
<td>none</td>
<td></td>
<td>0.0.0.0</td>
<td>0</td>
<td>no</td>
</tr>
<tr>
<td>9 Prism-Info</td>
<td>memory</td>
<td>none</td>
<td></td>
<td>0.0.0.0</td>
<td>0</td>
<td>no</td>
</tr>
<tr>
<td>10 Web-Proxy-Admin</td>
<td>memory</td>
<td>none</td>
<td></td>
<td>0.0.0.0</td>
<td>0</td>
<td>no</td>
</tr>
<tr>
<td>11 ISDN-Info</td>
<td>memory</td>
<td>none</td>
<td></td>
<td>0.0.0.0</td>
<td>0</td>
<td>no</td>
</tr>
<tr>
<td>12 Hotspot-Access-Server</td>
<td>memory</td>
<td>none</td>
<td></td>
<td>0.0.0.0</td>
<td>0</td>
<td>no</td>
</tr>
<tr>
<td>13 Hotspot-Info</td>
<td>memory</td>
<td>none</td>
<td></td>
<td>0.0.0.0</td>
<td>0</td>
<td>no</td>
</tr>
<tr>
<td>14 Hotspot-Error</td>
<td>memory</td>
<td>none</td>
<td></td>
<td>0.0.0.0</td>
<td>0</td>
<td>no</td>
</tr>
<tr>
<td>15 IPsec-Event</td>
<td>memory</td>
<td>none</td>
<td></td>
<td>0.0.0.0</td>
<td>0</td>
<td>no</td>
</tr>
<tr>
<td>16 IKE-Event</td>
<td>memory</td>
<td>none</td>
<td></td>
<td>0.0.0.0</td>
<td>0</td>
<td>no</td>
</tr>
<tr>
<td>17 IPsec-Warning</td>
<td>memory</td>
<td>none</td>
<td></td>
<td>0.0.0.0</td>
<td>0</td>
<td>no</td>
</tr>
<tr>
<td>18 System-Echo</td>
<td>memory</td>
<td>none</td>
<td></td>
<td>0.0.0.0</td>
<td>0</td>
<td>yes</td>
</tr>
</tbody>
</table>

```
[admin@MikroTik] system logging facility>
```
Notes

print command has the following arguments:

- **follow** - monitor system logs
- **without-paging** - print the log without paging
- **file** - saves the log information to ftp with a specified file name

Example

To view the local logs:

```
[admin@MikroTik] > log print
TIME MESSAGE
dec/24/2003 08:20:36 log configuration changed by admin
-- [Q quit|D dump]
```

To monitor the system log:

```
[admin@MikroTik] > log print follow
TIME MESSAGE
dec/24/2003 08:20:36 log configuration changed by admin
dec/24/2003 08:24:34 log configuration changed by admin
dec/24/2003 08:24:51 log configuration changed by admin
dec/24/2003 08:25:59 log configuration changed by admin
dec/24/2003 08:25:59 log configuration changed by admin
dec/24/2003 08:30:05 log configuration changed by admin
dec/24/2003 08:30:05 log configuration changed by admin
dec/24/2003 08:35:56 system started
dec/24/2003 08:35:57 isdn-out1: initializing...
dec/24/2003 08:35:57 isdn-out1: dialing...
dec/24/2003 08:35:58 Prism firmware loading: OK
dec/24/2003 08:37:48 user admin logged in from 10.1.0.60 via telnet
-- Ctrl-C to quit. New entries will appear at bottom.
```
Bandwidth Control

Document revision 1.6 (Wed Dec 08 12:40:17 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
Summary
Specifications
Related Documents
Description
Additional Documents
Queue Types
Description
Property Description
Notes
Example
Interface Default Queues
Property Description
Example
Configuring Simple Queues
Description
Property Description
Notes
Example
Configuring Queue Trees
Description
Property Description
Notes
Example
Troubleshooting
Description
Example of Emulating a 128kbps/64kbps Line
Queue tree example with masquerading
Example of Guaranteed Quality of Service
Example of using global-in and global-out queues
PCQ Example

General Information

Summary

Queuing is a mechanism that controls data rate allocation, delay variability, timely delivery, and delivery reliability. The MikroTik RouterOS supports the following queuing mechanisms:

- PFIFO - Packets First-In First-Out
- BFIFO - Bytes First-In First-Out
• SFQ - Stochastic Fair Queuing
• RED - Random Early Detection
• HTB - Hierarchical Token Bucket
• PCQ - Per Connection Queue

The queuing can be used for limiting the data rate for certain IP addresses, protocols or ports. The queuing is performed for packets leaving the router through a real interface. It means that the queues should always be configured on the outgoing interface regarding the traffic flow. There are two additional virtual interfaces in queue tree which are used to limit all the traffic coming to (global-in) or leaving (global-out) the router regardless of physical interface.

Specifications

Packages required: system
License required: level1 (limited to 1 queue) , level3
Home menu level: /queue
Standards and Technologies: None
Hardware usage: significant

Related Documents

• Package Management
• IP Addresses and ARP
• Firewall Filters

Description

Clasless Queues

There are four types of simple queues implemented in RouterOS: PFIFO, BFIFO, SFQ and RED. With Bytes First-In First-Out (BFIFO) and Packets First-In First-Out (PFIFO) packets are served in the same order as they are received. The only difference between BFIFO and PFIFO is that PFIFO has a length measured in packets, BFIFO in bytes. Generally, you do not want to use BFIFO or PFIFO as traffic shapers. It's better to use them just for statistics as they are pretty fast. The only exception is when you are running out of resources with RED and/or with complicated queue tree.

Stochastic Fair Queuing (SFQ) cannot limit traffic at all. Its main idea is to equalize sessions (not computer traffic, but session traffic, it is sometimes mentioned as SFQ drawback) when your link is completely full. It works in round-robin fashion, giving each session a chance to send sfq-allot bytes. Its algorithm can distinguish only 1024 sessions, and that is why several sessions can be treated as one. Each sfq-perturb seconds it drops internal table mixing all the connections and creates a new table. As it is very fast, you may want to use it as a child queue.

To address the imperfectness of SFQ, PCQ was created. PCQ is an advanced SFQ implementation without its stochastic nature - it is more precise, lets you choose classifiers and put a limit (it is called pcq-rate) on each subqueue it has (limits are applied on each subqueue simultaneously, you can not make different limits on particular subqueues). It degrades into a precise version of SFQ if
you put no limit and choose all classifiers at once. PCQ type is used for limiting data rate for each connection. These connections can be classified by the **pcq-classifier**:

- **src-address** - source address
- **dst-address** - destination address
- **src-port** - source port
- **dst-port** - destination port

You can use multiple parameters in the **pcq-classifier**. The **pcq-limit** is number of packets which can hold a single PCQ queue. Data rate for each connection is limited by the **pcq-rate** parameter (in bytes per second).

The combination of src-address, src-port, dst-address, dst-port (also known as tuple) uniquely identifies a connection (i.e., there can not be two different connections with the same tuple).

Note: for using PCQ you have to use queue tree.

Note: to equalize not each particular user (by IP address), but each particular connection, specify all pcq-classifiers at once.

The normal behavior of queues is called tail-drop. Tail-drop works by queuing up to a certain amount, then dropping all traffic that 'spills over'. Random Early Detection (RED is also known as Random Early Drop because it actually works that way) statistically drops packets from flows before it reaches its hard limit. This causes a congested backbone link to slow more gracefully. It starts dropping packets when threshold reaches **red-min-threshold** mark randomly with increasing probability as threshold rising. Maximum probability is used when traffic reaches **red-max-threshold** mark. Then packets are simply thrown away. burst parameter is the number of packets allowed to burst through the interface when the link is empty (generally value of \((\text{red-min-threshold}+\text{red-min-threshold}+\text{red-max-threshold})/3\) works fine). The minimum value that can be used here is equal to the value of **red-min-threshold**.

Classful Queues

Classful queues are very useful if you have different kinds of traffic which should have different treatment. Generally, we can set only one queue on the interface, but in RouterOS even simple queues (known as classless queues) are attached to the main (attached to the root, which represent real interface) Hierarchical Token Bucket (HTB) and thus have some properties derived from that parent queue. With classful queues it is possible to deploy hierarchical queue trees. For example, we can set a maximum data rate for a workgroup and then distribute that amount of traffic between the members of that group as we can do with simple queues attached to the main HTB, but with upper limit.

Each queue represents a virtual interface with the allowed data rate. It can be borrowed from sibling queues (queues that are children of one queue) when **max-limit** is greater than **limit-at**. If so, the queue would use over the allocated data rate whenever possible. Only when other queues are getting too long and a connection is not to be satisfied, then the borrowing queues would be limited at their allocated data rate.

When a parent is allowed to send some amount of traffic, it asks its inner queues in order of **priority** (priorities are processed one after another, from 1 to 8, where 1 means the highest priority). When a queue reaches its **limit-at** value, its priority is not to be taken in account, such a queue will
be less-priorititative than the ones not reached this limit.

Information Rates and Contention Ratios

Quality of Service (QoS) means that router should prioritize and shape network traffic. QoS is not so much about limiting, it is more about providing quality. The main terms used to describe the level of QoS for network applications are:

- **CIR (Committed Information Rate)** - the guaranteed data rate. It means that traffic not exceeding this rate should always be delivered
- **MIR (Maximal Information Rate)** - the maximal data rate router will provide
- **Contention Ratio** - the ratio to which the defined data rate is shared between users (i.e., data rate is allocated to a number of subscribers). For example, the contention ratio of 1:4 means that the allocated data rate may be shared between no more than 4 users
- **Priority** - the order of importance in what traffic will be processed. You can give priority to some traffic in order it to be handled before some other traffic.

MikroTik RouterOS may be used to provide CIR and MIR with some contention level and priority. Here we will talk in terms of queues (which represent either real or virtual interface) and classes (children of a queue; each class has another queue attached to it):

- **limit-at** property is used to specify CIR. If the queue will be able to provide that data rate, it will (i.e, the parent queue (and the link the router is connected to) should be able to provide the total data rate equal or greater that the sum of all CIRs the queue should satisfy in order to guarantee these CIRs). CIRs will be satisfied in order of their priority.
- **max-limit** property is used to specify MIR. If the queue has satisfied all the CIRs and it is able to provide some additional data rate, it will try to distribute that additional data rate between all its classes regardless of their priorities and not exceeding their MIRs.
- Filters in RouterOS are very powerful and flexible. Providing Contention Ratio is only one application of what they can do. Using firewall mangle you can mark some a number of hosts with a flow-mark, so the data rate allocated for that mark will be shared between these hosts.

Virtual Interfaces

In addition to real interfaces, there are two virtual interfaces you can attach three queues to:

- **global-out** - represents all the output interfaces in general. Queues attached to it applies before the ones attached to a specific interface.
- **global-in** - represents all the input interfaces in general (INGRESS queue). Please note that queues attached to **global-in** applies to incoming traffic, not outgoing. **global-in** queueing is taking place just after mangle and **dst-nat**.

Queue burst

A queue burst is a way to 'overcome' the queue limit for a certain amount of time and packets. A queue with burst allows peaks of data rate up to **burst-limit** value, but if average data rate is higher than **burst-threshold** for **burst-time** (in seconds) time, the queue is collapsed to the **max-limit** value. The queue size is expanded back to **burst-limit** value when average data rate becomes lesser.
than burst-threshold.
This type of behaviour can be extremely useful for prioritizing small rapid packet sequences like these coming from http www sessions.

For queues that limit traffic flow in both directions, total-burst-time, total-burst-limit and total-burst-threshold properties can be used to apply bidirectional bursts.

Additional Documents

- Home of Hierarchical Token Bucket (HTB)
- Paper on Random Early Detection (RED)
- More complete information on Traffic Control

Queue Types

Home menu level: /queue type

Description

The queue types are used to specify some common argument values for queues. There are four default built-in queue types: default, ethernet-default, wireless-default and synchronous-default. The built-in queue types cannot be removed.

Property Description

bfifo-limit (integer ; default: 15000) - BFIFO queue limit. Maximum byte count that queue can hold

kind (pfifo | bfifo | red | sfq | pcq ; default: pfifo) - kind of the queuing algorithm used:
 • pfifo - Packets First-In First-Out
 • bfifo - Bytes First-In First-Out
 • red - Random Early Detection
 • sfq - Stohastic Fair Queuing
 • pcq - Per Connection Queuing

name (name) - name for the queue type

pcq-classifier (multiple choice: dst-address, dst-port, src-address, src-port ; default: "") - the classifier of grouping traffic flow

pcq-limit (integer ; default: 50) - how many packets to hold in a PCQ

pcq-rate (integer ; default: 0) - maximal data rate (in bits per second) assigned to one group
 • 0 - do not limit data rate

pfifo-limit (integer ; default: 10) - PFIFO queue limit. Maximum packet count that queue can hold

red-burst (integer ; default: 20) - RED burst

red-limit (integer ; default: 60) - RED queue limit

red-max-threshold (integer ; default: 50) - RED maximum threshold
red-min-threshold (*integer*; default: **10**) - RED minimum threshold

sfq-allot (*integer*; default: **1514**) - amount of data in bytes that can be sent in one round-robin round

sfq-perturb (*integer*; default: **5**) - how often to change hash function

Notes

For small limitations (64kbps, 128kbps) RED is more preferable. For larger speeds PFIFO will be as good as RED. RED consumes much more memory and CPU than PFIFO & BFIFO.

Example

To add **red** queue type with minimum threshold of **0**, without any burst and named **CUSTOMER-def**:

```bash
[admin@MikroTik] queue type> add name=CUSTOMER-def kind=red \ 
  ... red-min-threshold=0 red-burst=0
[admin@MikroTik] queue type> print
  0 name="default" kind=pfifo bfifo-limit=15000 pfifo-limit=50 red-limit=60 
  red-min-threshold=10 red-max-threshold=50 red-burst=20 sfq-perturb=5 
  sfq-allot=1514 pcq-rate=0 pcq-limit=50 pcq-classifier=""
  1 name="ethernet-default" kind=pfifo bfifo-limit=15000 pfifo-limit=50 red-limit=60 
  red-min-threshold=10 red-max-threshold=50 red-burst=20 sfq-perturb=5 
  sfq-allot=1514 pcq-rate=0 pcq-limit=50 pcq-classifier=""
  2 name="wireless-default" kind=sfq bfifo-limit=15000 red-limit=60 
  red-min-threshold=10 red-max-threshold=50 red-burst=20 sfq-perturb=5 
  sfq-allot=1514 pcq-rate=0 pcq-limit=50 pcq-classifier=""
  3 name="synchronous-default" kind=red bfifo-limit=15000 red-limit=60 
  red-min-threshold=10 red-max-threshold=50 red-burst=20 sfq-perturb=5 
  sfq-allot=1514 pcq-rate=0 pcq-limit=50 pcq-classifier=""
  4 name="CUSTOMER-def" kind=red bfifo-limit=15000 red-limit=60 
  red-min-threshold=0 red-max-threshold=50 red-burst=0 sfq-perturb=5 
  sfq-allot=1514 pcq-rate=0 pcq-limit=50 pcq-classifier=""
[admin@MikroTik] queue type>
```

Interface Default Queues

Home menu level: `/queue interface`

Property Description

interface (*name*) - interface name

queue (*name*; default: **default**) - default queue for the interface

Example

To change the default queue type to **wireless-default** for the *wlan1* interface:

```bash
[admin@MikroTik] queue interface> print
  # INTERFACE QUEUE
  0 ether1 default
  1 wlan1 default
[admin@MikroTik] queue interface> set wlan1 queue=wireless-default
[admin@MikroTik] queue interface> print
```

Copyright 1999-2005, MikroTik. All rights reserved. Mikrotik, RouterOS and RouterBOARD are trademarks of Mikrotikls SIA. Other trademarks and registered trademarks mentioned herein are properties of their respective owners.
INTERFACE QUEUE

- 0 ether1 default
- 1 wlan1 wireless-default

[admin@MikroTik] queue interface>

Configuring Simple Queues

Home menu level: /queue simple

Description

Simple queues can be used to set up data rate management for the whole traffic leaving an interface or for certain target (source) and/or destination addresses. For more sophisticated queue setup use the queue trees described further on.

Property Description

- **burst-limit** *(text; default: 0/0)* - maximal allowed burst of data rate in form of in/out
- **burst-threshold** *(text; default: 0/0)* - average burst threshold in form of in/out
- **burst-time** *(text; default: 0/0)* - burst time in form of in/out
- **dst-address** *(IP address | netmask)* - destination IP address
- **interface** *(name)* - outgoing interface of the traffic flow
- **limit-at** *(text; default: 0/0)* - allocated stream data rate (bits/s) in form of in/out, where in is the flow that matches the rule precisely, and out is the flow that matches the reverse rule (i.e. going from the specified interface with source and destination addresses swapped)
- **max-limit** *(text; default: 0/0)* - maximal stream data rate (bits/s) in form of in/out, where in is the flow that matches the rule precisely, and out is the flow that matches the reverse rule (i.e. going from the specified interface with source and destination addresses swapped)
- **name** *(name; default: queue1)* - name of the queue
- **priority** - flow priority, 1 is the highest priority
- **queue** *(name; default: default)* - queue type. If you specify the queue type other than default, then it overrides the default queue type set for the interface under /queue interface
- **target-address** *(IP address | netmask)* - limitation target IP address (source address)
- **total-burst-limit** *(text; default: 0)* - maximal allowed total (bidirectional) burst of data rate (bits/s)
- **total-burst-threshold** *(text; default: 0)* - Total (bidirectional) average burst threshold (bits/s)
- **total-burst-time** *(text; default: 0)* - total (bidirectional) burst time
- **total-limit-at** *(integer; default: 0)* - allocated total (bidirectional) stream data rate (bits/s)
- **total-max-limit** *(integer; default: 0)* - maximal total (bidirectional) stream data rate (bits/s)

Notes

max-limit must be equal or greater than **limit-at**.

Queue rules are processed in the order they appear in the list. If some packet matches the queue rule, then the queuing mechanism specified in that rule is applied to it, and no more rules are
processed for that packet.

The value 0 means that these settings will be ignored.

Example

To add a simple queue that will limit download traffic for network **192.168.0.0/24** to **128000** bits per second, and upload traffic from the network **192.168.0.0/24** to **64000** bits per second on the interface *ether1*: interface:

```
[admin@MikroTik] queue simple> add target-address=192.168.0.0/24 interface=ether1\
   max-limit=64000/128000
[admin@MikroTik] queue simple> print
Flags: X - disabled, I - invalid, D - dynamic  
0 name="queue1" target-address=192.168.0.0/24 dst-address=0.0.0.0/0  
   interface=ether1 queue=default priority=8 limit-at=0/0
   max-limit=64000/128000
[admin@MikroTik] queue simple>
```

Configuring Queue Trees

Home menu level: `/queue tree`

Description

The queue trees should be used when you want to use sophisticated data rate allocation based on protocols, ports, groups of IP addresses, etc.

Property Description

- **burst-limit** (*text*; default: **0**) - maximal allowed burst of data rate
- **burst-threshold** (*text*; default: **0**) - average burst threshold
- **burst-time** (*text*; default: **0**) - for how long the burst is allowed
- **flow** (*name*; default: **""**) - flow mark of the packets to be queued. Flow marks can be assigned to the packets under '/ip firewall mangle' when the packets enter the router through the incoming interface
- **limit-at** (*integer*; default: **0**) - maximum stream data rate (bits/s)
- **max-limit** (*integer*; default: **0**) - maximum stream data rate (bits/s)
- **name** (*name*; default: **queueN**) - descriptive name for the queue
- **parent** (*name*) - name of the parent queue. The top-level parents are the available interfaces (actually, main HTB). Lower level parents can be other queues
 - **global-in** - match all incomming traffic
 - **global-out** - match all outgoing traffic
- **priority** - flow priority, 1 is the highest
- **queue** (*name*; default: **default**) - queue type

Notes

max-limit must be equal or greater than **limit-at**.
To apply queues on flows, the mangle feature should be used first to mark incoming packets.

The router tries to apply queue trees before simple queues.

Example

To mark all the traffic going from web-servers (TCP port 80) with `abc-http` mark:

```plaintext
[admin@MikroTik] ip firewall mangle> add action=passthrough mark-flow=abc-http \ 
... protocol=tcp target-port=80
[admin@MikroTik] ip firewall mangle> print
Flags: X - disabled, I - invalid, D - dynamic
0 target-address=:80 protocol=tcp action=passthrough mark-flow=abc-http
[admin@MikroTik] ip firewall mangle>
```

You can add queue using the `/queue tree add` command:

```plaintext
[admin@MikroTik] queue tree> add name=HTTP parent=ether1 flow=abc-http \ 
max-limit=128000
[admin@MikroTik] queue tree> print
Flags: X - disabled, I - invalid, D - dynamic
0 name="HTTP" parent=ether1 flow=abc-http limit-at=0 queue=default
   priority=8 max-limit=128000 burst-limit=0 burst-threshold=0
   burst-time=0
[admin@MikroTik] queue tree>
```

Troubleshooting

Description

- **The queue is not added for the correct interface**
 Add the queue to the interface through which the traffic is leaving the router. Queuing works only for packets leaving the router!

- **The source/destination addresses of the packets do not match the values specified in the queue setting**
 Make sure the source and destination addresses, as well as network masks are specified correctly! The most common mistake is wrong address/netmask, e.g., 10.0.0.217/24 (wrong), 10.0.0.217/32 (right), or 10.0.0.0/24 (right)

- **The priority setting does not work!**
 In order to take the priority setting in account, you have to specify `limit-at` parameter. Otherwise This setting will be ignored or will not work correctly

General Information

Example of Emulating a 128kbps/64kbps Line

Assume we want to emulate a 128k download and 64k upload line connecting IP network 192.168.0.0/24. The network is served through the Local interface of customer's router. The basic network setup is in the following diagram:

IP addresses on MikroTik:

```plaintext
[admin@MikroTik] ip address> print
```
ADDRESS NETWORK BROADCAST INTERFACE

<table>
<thead>
<tr>
<th>#</th>
<th>ADDRESS</th>
<th>NETWORK</th>
<th>BROADCAST</th>
<th>INTERFACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>192.168.0.254/24</td>
<td>192.168.0.0</td>
<td>192.168.0.255</td>
<td>Local</td>
</tr>
<tr>
<td>1</td>
<td>10.5.8.104/24</td>
<td>10.5.8.0</td>
<td>10.5.8.255</td>
<td>Public</td>
</tr>
</tbody>
</table>

```
[admin@MikroTik] ip address>
```

And routes:

```
[admin@MikroTik] ip route> print
```

Flags: X - disabled, I - invalid, D - dynamic, J - rejected, C - connect, S - static, r - rip, o - ospf, b - bgp

<table>
<thead>
<tr>
<th>#</th>
<th>DST-ADDRESS</th>
<th>G GATEWAY</th>
<th>DISTANCE</th>
<th>INTERFACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>S 0.0.0.0/0</td>
<td>r 10.5.8.1</td>
<td>1</td>
<td>Public</td>
</tr>
<tr>
<td>1</td>
<td>DC 192.168.0.0/24</td>
<td>r 0.0.0.0</td>
<td>0</td>
<td>Local</td>
</tr>
<tr>
<td>2</td>
<td>DC 10.5.8.0/24</td>
<td>r 0.0.0.0</td>
<td>0</td>
<td>Public</td>
</tr>
</tbody>
</table>

```
[admin@MikroTik] ip route>
```

Add a simple queue rule which will limit download traffic to 128kbps and upload traffic to 64kbps for clients on local network (192.168.0.0/24):

```
/queue simple add name=Limit-Local target-address=192.168.0.0/24 \ interface=Local max-limit=65536/131072
```

```
[admin@MikroTik] queue simple> print
```

Flags: X - disabled, I - invalid, D - dynamic

0 name="Limit-Local" target-address=192.168.0.0/24 dst-address=0.0.0.0/0

```
interface=Local queue=default priority=8 limit-at=0/0 max-limit=65536/131072
```

The **max-limit** parameter defines maximum allowed bandwidth in form of upload/download (for clients, connected to interface Local). **target-address** is an additional matcher that specifies our local network. If you will not specify target-address and will attach a new network to interface Local it will also be limited.

You can also monitor the traffic flow through an interface while doing file transfer, using the /interface monitor-traffic command:

```
[admin@MikroTik] interface> monitor-traffic Local
```

received-packets-per-second: 7
received-bits-per-second: 68kbps
sent-packets-per-second: 13
sent-bits-per-second: 135kbps

If you want to exclude the server from being limited, add a queue for it without limitation (**max-limit=0/0** which means no limitation) and move it to the top:

```
/queue simple add name=Exclude-Server interface=Local \ target-address=192.168.0.1/32
```

```
[admin@MikroTik] queue simple> print
```

Flags: X - disabled, I - invalid, D - dynamic

0 name="Exclude-Server" target-address=192.168.0.1/32 dst-address=0.0.0.0/0

```
interface=Local queue=default priority=8 limit-at=0/0 max-limit=0/0
```

1 name="Limit-Local" target-address=192.168.0.0/24 dst-address=0.0.0.0/0

```
interface=Local queue=default priority=8 limit-at=0/0 max-limit=65536/131072
```

```
[admin@MikroTik] queue simple>
```

Queue tree example with masquerading

In previous example we dedicated 128kbps download and 64kbps upload to local network. In this example we will show you how to guarantee 256kbps download (128kbps for server, 64kbps for Workstation and Laptop) and 128kbps for upload (64kbps for server, 32kbps for workstation and laptop) for local network devices. Additionally, if there is bandwidth that is currently free, share it
among users. For example, if we turn off the laptop (or it does not use network resources), share its 64k download and 32k upload to Server and workstation.

When using masquerading, you have to mark the outgoing connection with `mark-connection` parameter and then mark all packets belonging to this connection with the `mark-flow` parameter.

1. Mark server's download and upload traffic. At first we will mark the outgoing connection and then all packets which belong to this connection.

   ```
   /ip firewall mangle
   add src-address=192.168.0.1/32 action=passthrough mark-connection=server-con
   add connection=server-con action=accept mark-flow=server
   ```

2. The same for laptop and workstation:

   ```
   /ip firewall mangle
   add src-address=192.168.0.2/32 action=passthrough \ 
   mark-connection=lap_work-con
   add src-address=192.168.0.3/32 action=passthrough \ 
   mark-connection=lap_work-con
   add connection=lap_work-con action=accept mark-flow=lap_work
   ```

 As you can see, we marked connections that belong for laptop and workstation with the same flow.

3. Now add rules in `/queue tree`. The first rule will limit server's download and the second - upload traffic:

   ```
   /queue tree
   add name=Server-Down parent=Local flow=server limit-at=131072 \ 
   max-limit=262144
   add name=Server-Up parent=Public flow=server limit-at=65536 \ 
   max-limit=131072
   ```

 And the same for Laptop and Workstation:

   ```
   /queue tree
   add name=Laptop-WorkStation-Down parent=Local flow=lap_work \ 
   limit-at=65536 max-limit=262144
   add name=Laptop-WorkStation-Up parent=Public flow=lap_work \ 
   limit-at=32768 max-limit=131072
   ```

Example of Guaranteed Quality of Service

This example shows how to limit data rate on a channel and guarantee minimum speed to the FTP server allowing other clients to use the rest of the traffic.

Assume we want to emulate a 256kbps download and 128kbps upload line connecting IP network 192.168.0.0/24 as in the previous examples. But if these speeds are the best that you can get from your Internet connection, you may want to guarantee certain speeds to the FTP server (192.168.0.1) so that your customers could download from and upload to this server with the speeds not dependent on the other traffic using the same channel (for example, we will guarantee this server the minimum data rate of 64kbps for each flow direction).

1. Limit the overall download (256k) and upload (128k) traffic:

   ```
   /queue tree
   add parent=Local max-limit=262144 name=Download
   add parent=Public max-limit=131072 name=Upload
   ```

2. Mark FTP connection, initiated by FTP server (will not work for FTP passive mode!):
Mark all packets belonging to this connection with a mark **ftp**:

```
/ip firewall mangle add connection=ftp-con mark-flow=FTP_Server action=accept
```

Mark other traffic:

```
/ip firewall mangle add action=accept mark-flow=other
```

3. Add queues for FTP Server download and upload:

```
queue tree add name=Server_Upload parent=Upload limit-at=65536 \ 
  flow=FTP_Server max-limit=131072 priority=7
queue tree add name=Server_Download parent=Download limit-at=32768 \ 
  flow=FTP_Server max-limit=262144 priority=7
```

Add queues for other's download and upload:

```
queue tree add name=Other_Upload parent=Upload flow=other
queue tree add name=Other_Download parent=Download flow=other
```

Now, the FTP traffic destined to and coming from FTP Server will have a guaranteed bandwidth of 64kbps, and a higher priority than other traffic (priority=7).

Example of using global-in and global-out queues

Let us consider a situation when you are using a Web-Proxy on your MikroTik router and you want to use bandwidth limitation to/from Internet and allow the maximum speed available if the clients use proxy-data (or do uploads to the router). In this situation you can use **global-in** and **global-out** virtual interfaces. Remember that data from Web-Proxy is sent to clients from Local Process. See this diagram for a better understanding of packet flow through the router.

1. Assume that you already have configured your web-proxy:

```
[admin@MikroTik] ip web-proxy> print
  enabled: yes
  src-address: 10.5.8.104
  port: 8080
  hostname: proxy
  transparent-proxy: no
  parent-proxy: 0.0.0.0:0
  cache-administrator: webmaster
  max-object-size: 4096 kB
  cache-drive: system
  max-cache-size: none
  status: running
  reserved-for-cache: 100 MB
```

2. Add a mangle rule for marking all packets coming from interface **Public**:

```
/ip firewall mangle add in-interface=Public mark-flow=all-down action=accept
```

Add a mangle rule for marking all packets coming from interface **Local**:

```
/ip firewall mangle add in-interface=Local mark-flow=all-up action=accept
```

3. Add a queue tree rule that will limit all traffic coming from interface **Public** (flow=all-down) to 512kbps:

```
queue tree add parent=global-in max-limit=524288 flow=all-down
```

Add a queue tree rule that will limit all traffic coming from interface **Local** (flow=all-up) to 256kbps:
Now the client downloads from the router (proxy) will be unlimited, but downloads from the Internet will be limited to 512K! The same goes for uploads - no limitation if you are uploading to router, but limit all uploads to Internet to 256K.

PCQ Example

In situations when you want to limit users in your network to a specific bandwidth, you can use PCQ. In this example we will show you how to configure the router so that all users have 64kbps download and 32kbps upload:

1. Mark all packets with flow **all**:

   ```
   /ip firewall mangle add action=accept mark-flow=all
   ```

2. Create two PCQ queue types - one for download and one for upload. For download traffic queues will be classified by **dst-address** and for upload - by **src-address**:

   ```
   /queue type add name=PCQ-Download kind=pcq pcq-rate=65536 \
   pcq-classifier=dst-address
   /queue type add name=PCQ-Upload kind=pcq pcq-rate=32768 \
   pcq-classifier=src-address
   ```

3. Add two queue rules - one for download and one for upload:

   ```
   /queue tree add parent=global-in queue=PCQ-Download flow=all
   /queue tree add parent=global-out queue=PCQ-Upload flow=all
   ```
Packet Marking (Mangle)

Document revision 2.5 (Mon May 17 12:52:24 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
General Information
 Summary
 Quick Setup Guide
 Specifications
 Related Documents
Mangle
 Description
 Property Description
 Example
 How to Mangle NATted Traffic

General Information

Summary

Mangle is a kind of 'marker' to mark packets for future processing. Many other facilities in RouterOS make use of these marks, e.g. queue trees and NAT. In general mangle marks exist only within the router, they are not transmitted across the network.

Two special cases when mangle alters actual packets are MSS and TOS fields of an IP packet changing.

Quick Setup Guide

Let us consider that we want to mangle all packets which are leaving the network 192.168.0.0/24 and are destined to a HTTP web-server (protocol TCP, port 80), with a flow, labeled http-traffic:

[admin@MikroTik] ip firewall mangle> src-address=192.168.0.0/24 \
\... dst-port=80 mark-flow=http-traffic

Specifications

Packages required: system
License required: level1
Home menu level: /ip firewall mangle
Standards and Technologies: IP
Hardware usage: Increases with rules and connections count

Related Documents

• Package Management
Mangle

Description

Packets entering the router can be marked for further processing against the rules of firewall chains, source or destination NAT rules, as well as for applying queuing to them.

It is also possible to mark the packets associated (including related) with the same connection as the marked packet (in other words, to mark a connection with all related connections, you need to mark only one packet belonging to that connection).

You may also want to change the TCP Maximum Segment Size (MSS), to a value which is your desired MTU value less 40. The MSS can be set only for TCP SYN packets.

Please note that there is a separate document describing Peer-to-Peer protocol marking (Peer to Peer Traffic Control).

Type of Service

Internet paths vary in quality of service they provide. They can differ in cost, reliability, delay and throughput. This situation imposes some tradeoffs, exempli gratia the path with the lowest delay may be among the slowest. Therefore, the "optimal" path for a packet to follow through the Internet may depend on the needs of the application and its user.

Because the network itself has no knowledge on how to optimize path choosing for a particular application or user, the IP protocol provides a facility for upper layer protocols to convey hints to the Internet Layer about how the tradeoffs should be made for the particular packet. This facility is called the "Type of Service" facility.

The fundamental rule is that if a host makes appropriate use of the TOS facility, its network service should be at least as good as it would have been if the host had not used this facility.

The TOS can be one of five types, each of them is an instruction to:

- **low-cost** - minimize monetary cost
- **low-delay** - minimize delay
- **normal** - normal service
- **max-reliability** - maximize reliability
- **max-throughput** - maximize throughput

Property Description
action (accept | passthrough ; default: accept) - action to undertake if the packet matches the rule, one of the:
 • accept - accept the packet applying the appropriate attributes (marks, MSS), and no more rules are processed in the list
 • passthrough - apply the appropriate attributes (marks, MSS), and go on to the next rule
disabled (yes | no ; default: no) - specifies, whether the rule is disabled or not
in-interface (name ; default: all) - interface the packet has entered the router through. If the default value all is used, it may include the local loopback interface for packets originated from the router
src-address (IP address ; default: 0.0.0.0/0-65535) - source IP address
src-netmask (IP address ; default: accept) - source netmask in decimal form x.x.x.x
src-port (integer : 0 ..65535 ; default: 0-65535) - source port number or range
 • 0 - all ports from 0 to 65535
comment (text ; default: "") - a descriptive comment for the rule
dst-address (IP address ; default: 0.0.0.0/0-65535) - destination IP address
dst-netmask (IP address ; default: accept) - destination netmask in decimal form x.x.x.x
dst-port (integer : 0 ..65535 ; default: 0-65535) - destination port number or range
 • 0 - all ports from 1 to 65535
icmp-options (integer ; default: any:any) - matches ICMP Type:Code fields
tcp-options (any | syn-only | non-syn-only ; default: any) - TCP options
protocol (ah | egp | ggp | icmp | ipencap | ospf | rsvp | udp | xtp | all | encap | gre | idpr-cmtp | ipip | pup | st | vmtcp | idp | esp | hmp | igmp | iso-tp4 | rdp | tcp | xns-ids : default: all) - protocol setting
 • all - cannot be used, if you want to specify ports
content (text ; default: "") - the text packets should contain in order to match the rule
flow (text) - flow mark to match. Only packets marked in the MANGLE would be matched
p2p (any | all-p2p | bit-torrent | direct-connect | fasttrack | soulseek | blubster | edonkey | gnutella | warez; default: any) - match Peer-to-Peer (P2P) connections:
 • all-p2p - match all known P2P traffic
 • any - match any packet (i.e., do not check this property)
connection (text ; default: "") - connection mark to match. Only connections (including related) marked in the MANGLE would be matched
limit-burst (integer ; default: 0) - allowed burst regarding the limit-count/limit-time
limit-time (time ; default: 0) - time interval, used in limit-count
 • 0 - forever
limit-count (integer ; default: 0) - how many times to use the rule during the limit-time period
src-mac-address (MAC address ; default: 00:00:00:00:00:00) - host's MAC address the packet has been received from
log (yes | no ; default: no) - specifies to log the action or not
mark-flow (text ; default: "") - change flow mark of the packet to this value
mark-connection (text ; default: "") - change connection mark of the packet to this value
tcp-mss (integer | dont-change ; default: dont-change) - change MSS of the packet
 • dont-change - leave MSS of the packet as is

tos (any | max-reliability | max-throughput | min-cost | min-delay | normal | integer ; default: any) - specifies a match for Type-of-Service field of an IP packet
 • any - matches any ToS value

set-tos (max-reliability | max-throughput | min-cost | min-delay | normal | dont-change ; default: dont-change) - changes the value of Type-of-Service field of an IP packet
 • dont-change - do not change the value of Type-of-Service field
 • normal (ToS=0) - router will treat datagram as normal traffic
 • min-cost (ToS=2) - router will try to pass datagrams using routes with the lowest cost possible
 • max-reliability (ToS=4) - router will try to pass datagrams using routes which have propagated themselves as reliable regarding the loss of the datagrams. Useful for important traffic such as routing information
 • max-throughput (ToS=8) - router will try to choose routes with the highest bandwidth available. Useful for applications that use much traffic, such as FTP (when sending data)
 • min-delay (ToS=16) - router will try to pass the datagrams with lowest delay possible. Useful for interactive applications, for example, telnet

Example

Specify the value for the mark-flow argument and use action=passthrough, for example:

```
[admin@test_1] ip firewall mangle> add action=passthrough mark-flow=myflow
[admin@test_1] ip firewall mangle> print
Flags: X - disabled, I - invalid, D - dynamic
 0   src-address=0.0.0.0/0:0-65535 in-interface=all
dst-address=0.0.0.0/0:0-65535 protocol=all tcp-options=any
     icmp-options=any: any flow="" connection="" content=""
src-mac-address=00:00:00:00:00:00 limit-count=0 limit-burst=0
     limit-time=0s action=passthrough mark-flow=myflow tcp-mss=dont-change
mark-connection=""

[admin@test_1] ip firewall mangle>
```

In order to change the MSS, adjust the tcp-mss argument. For example, if you have encrypted PPPoE link with MTU = 1492, you can set the mangle rule as follows:

```
[admin@test_1] ip firewall mangle> add protocol=tcp
  \.. tcp-options=syn-only action=passthrough tcp-mss=1448
[admin@test_1] ip firewall mangle> print
Flags: X - disabled, I - invalid, D - dynamic
 0   src-address=0.0.0.0/0:0-65535 in-interface=all
dst-address=0.0.0.0/0:0-65535 protocol=all tcp-options=any
    icmp-options=any: any flow="" connection="" content=""
src-mac-address=00:00:00:00:00:00 limit-count=0 limit-burst=0
    limit-time=0s action=passthrough mark-flow=myflow tcp-mss=dont-change
mark-connection=""

1   src-address=0.0.0.0/0:0-65535 in-interface=all
dst-address=0.0.0.0/0:0-65535 protocol=tcp tcp-options=syn-only
    icmp-options=any: any flow="" connection="" content=""
src-mac-address=00:00:00:00:00:00 limit-count=0 limit-burst=0
    limit-time=0s action=passthrough mark-flow="" tcp-mss=1448
mark-connection=""

[admin@test_1] ip firewall mangle>
```
General Information

How to Mangle NATted Traffic

Suppose you need to limit both download and upload peer-to-peer data rate for NATted local users. It can be achieved using queue trees and mangle facility.

To mangle traffic from NATted users, do the following:

/ip firewall mangle add src-address=192.168.0.0/24 action=passthrough
mark-connection=nat_conn
/ip firewall mangle add connection=nat_conn mark-flow=my_clients

Now you can add queues to /queue tree submenu matching my_clients flowmark.
Network Address Translation

Document revision 1.4 (Fri Apr 23 14:25:45 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

General Information
 Summary
 Quick Setup Guide
 Specifications
 Related Documents
 Description
 Notes
Source NAT
 Description
 Property Description
 Notes
 Example
Destination NAT
 Description
 Property Description
 Example

General Information

Summary

Network Address Translation (NAT) provides ways for hiding local networks as well as to maintain public services on servers from these networks. Besides, through NAT additional applications like transparent proxy service can be made.

Quick Setup Guide

• Let us consider that we have a private network 192.168.0.0/24 and we want it to be able to use a single public IP address, which is assigned to interface Public. This can be done with masquerading:

 [admin@MikroTik] ip firewall src-nat> add src-address=192.168.0.0/24
 \... out-interface=Public action=masquerade

• Let us consider that we have a Web-Server in our private network 192.168.0.0/24 with IP address 192.168.0.2. To redirect all HTTP traffic from the router's address (10.5.8.104) to the Web-Server, use the following command:

 [admin@MikroTik] ip firewall dst-nat> add dst-address=10.5.8.104/32 dst-port=80 \
 \... to-dst-address=192.168.0.2 protocol=tcp action=nat
Specifications

Packages required: system
License required: level1
Home menu level: /ip firewall src-nat, /ip firewall dst-nat
Standards and Technologies: IP
Hardware usage: Increases with rules and connections count

Related Documents

- Package Management
- IP Addresses and ARP
- Routes, Equal Cost Multipath Routing, Policy Routing
- Firewall Filters

Description

NAT subdivision

Network Address Translation is subdivided into two separate facilities:

- Source NAT
 This type of NAT allows 'hiding' of private networks beyond the router. It alters forwarded IP packets' source addresses.

- Destination NAT
 This one is used for accessing public services on the local servers from outside the intranet. It can also help to accomplish some additional tasks like transparent proxying. Destination NAT alters forwarded IP packets' destination addresses.

Redirect and Masquerade

REDIRECT is similar to regular destination NAT in the same way as MASQUERADING is similar to source NAT - masquerading is source NAT, except you do not have to specify to-src-address - outgoing interface address is used automatically. The same is for REDIRECT - it is destination NAT where to-dst-address is not used - incoming interface address is used instead. So there is no use of specifying to-src-address for src-nat rules with action=masquerade, as well as no use of specifying to-dst-address for dst-nat rules with action=redirect. Note that to-dst-port is meaningful for REDIRECT rules - this is the port on which the service on router that will handle these requests is sitting (e.g. web proxy).

When packet is dst-natted (no matter - action=nat or action=redirect), dst address is changed. Information about translation of addresses (including original dst address) is kept in router's internal tables. Transparent web proxy working on router (when web requests get redirected to proxy port on router) can access this information from internal tables and get address of web server from them. If you are dst-natting to some different proxy server, it has no way to find web server's address from IP header (because dst address of IP packet that previously was address of web server has changed to address of proxy server). Starting from HTTP/1.1 there is special header in HTTP request which
tells web server address, so proxy server can use it, instead of dst address of IP packet. If there is no such header (older HTTP version on client), proxy server can not determine web server address and therefore can not work.

It means, that it is impossible to correctly transparently redirect HTTP traffic from router to some other transparent-proxy box. Only correct way is to add transparent proxy on the router itself, and configure it so that your "real" proxy is parent-proxy. In this situation your "real" proxy does not have to be transparent any more, as proxy on router will be transparent and will forward proxy-style requests (according to standard; these requests include all necessary information about web server) to "real" proxy.

Notes

The **Connection Tracking** facility (/ip firewall connection tracking) must be enabled if you want to use NAT.

Source NAT

Description

Source NAT is a firewall function that can be used to 'hide' private networks behind one external IP address of the router. For example, it is useful, if you want to access the ISP's network and the Internet appearing as all requests coming from one single IP address given to you by the ISP. The Source NAT will change the source IP address and port of the packets originated from the private network to the external address of the router, when the packet is routed through it.

Source NAT helps to ensure security since each outgoing or incoming request must go through a translation process that also offers the opportunity to qualify or authenticate the request or match it to a previous request. It also conserves the number of global IP addresses required and it lets the whole network use a single IP address in its communication with the world.

Property Description

```
dst-address ( IP address ; default: 0.0.0.0/0:0-65535 ) - destination IP address
src-address ( IP address ; default: 0.0.0.0/0:0-65535 ) - source IP address
flow - flow mark to match. Only packets marked in the mangle facility would be matched
limit-time ( time ; default: 0 ) - time interval, used in limit-count
protocol ( ah | all | ddp | egp | encap | esp | ggp | gre | hmp | icmp | idpr-cmtp | igmp | ipencap | ipip | iso-tp4 | ospf | pup | rdpp | rspp | st | tcp | udp | vmtp | xns-idp | xtp ; default: any ) - protocol setting
  • all - cannot be used, if you want to match packets by ports
icmp-options - ICMP options
content ( text ; default: """" ) - the text packets should contain in order to match the rule
comment ( text ; default: """" ) - a descriptive comment for the rule
connection ( text ; default: """" ) - connection mark to match. Only packets marked in the mangle facility would be matched
limit-burst ( integer ; default: 0 ) - allowed burst for the limit-count during the limit-time
```
limit-count (integer; default: 0) - specifies how many times to use the rule during the limit-time period

src-netmask (IP address) - source netmask in decimal form x.x.x.x

src-port (integer: 0..65535) - source port number or range
 - 0 - means all ports from 0 to 65535

dst-netmask (IP address) - destination netmask in decimal form x.x.x.x

dst-port (integer: 0..65535) - destination port number or range
 - 0 - means all ports from 0 to 65535

tos (any | max-reliability | max-throughput | min-cost | min-delay | normal | integer; default: any) - specifies a match for Type-of-Service field of an IP packet (see Firewall Filters manual for detailed description)

action (accept | masquerade | nat; default: accept) - action to undertake if a packet matched a particular src-nat rule, one of the:
 - accept - accept the packet without undertaking any action, except for mangle. No more rules are processed in the relevant list/chain
 - masquerade - use masquerading for the packet and substitute the source address:port of the packet with the ones of the router. In this case, the to-src-address argument value is not taken into account and it does not need to be specified, since the router's local address is used
 - nat - perform Network Address Translation. The to-src-address should be specified (ignored when action=masquerade)

out-interface (name; default: all) - interface the packet is leaving the router from.
 - all - may include the local loopback interface for packets with destination to the router

to-src-address (IP address; default: 0.0.0.0) - source address to replace original source address with

to-src-port (integer: 0..65535) - source port to replace original source port with

Notes

The source nat can masquerade several private networks, and use individual **to-src-address** for each of them.

Masquerading chooses outgoing packets' source addresses according to the **preferred-address** property of the relevant route.

Example

To use masquerading, a source NAT rule with **action=masquerade** should be added to the **src-nat** rule set:

```
[admin@test_1] ip firewall src-nat> add src-address=192.168.0.0/24 \ 
... out-interface=wlan1 action=masquerade
[admin@test_1] ip firewall src-nat> print
Flags: X - disabled, I - invalid, D - dynamic
  0 src-address=192.168.0.0/24 dst-address=0.0.0.0:0 to-src-address=0.0.0.0 to-src-port=0-65535
  out-interface=wlan1 protocol=all icmp-options=any:any_flow="" connection="" content="" limit-count=0 limit-burst=0 limit-time=0s action=masquerade to-src-address=0.0.0.0 to-src-port=0-65535
```

Copyright 1999-2005, MikroTik. All rights reserved. Mikrotik, RouterOS and RouterBOARD are trademarks of Mikrotikls SIA.
Other trademarks and registered trademarks mentioned herein are properties of their respective owners.
If the packet matches the **masquerade** rule, then the router opens a connection to the destination, and sends out a modified packet with its own address and a port allocated for this connection. The router keeps track about masqueraded connections and performs the "demasquerading" of packets, which arrive for the opened connections. For filtering purposes, you may want to specify the **to-src-ports** argument value, say, to 60000-65535

If you want to change the source address:port to specific adress:port, use the **action=nat** instead of **action=masquerade**:

```
[admin@test_1] ip firewall src-nat> add src-address=192.168.0.1/32 out-interface=wlan1 action=nat to-src-address=1.1.1.1
[admin@test_1] ip firewall src-nat> print
Flags: X - disabled, I - invalid, D - dynamic
  0 src-address=192.168.0.1/32:0-65535 dst-address=0.0.0.0/0:0-65535
  out-interface=wlan1 protocol=all icmp-options=any:any flow=""
  connection="" content="" limit-count=0 limit-burst=0 limit-time=0s
  action=nat to-src-address=1.1.1.1 to-src-port=0-65535
[admin@test_1] ip firewall src-nat>
```

Here, the:

- **src-address** - can be IP host's address, for example, 192.168.0.1/32, or network address 192.168.0.0/24

- **to-src-address** - can be one address, or a range, say 10.0.0.217-10.0.0.219. The addresses should be added to the router's interface, or should be routed to it from the gateway router.

Destination NAT

Home menu level: `/ip firewall dst-nat`

Description

Redirection and destination NAT should be used when you need to give access to services located on a private network from the outside world

Property Description

- **dst-address** (IP address; default: **0.0.0.0/0:0-65535**) - destination IP address
- **src-address** (IP address; default: **0.0.0.0/0:0-65535**) - source IP address
- **flow** - flow mark to match. Only packets marked in the mangle facility would be matched
- **limit-time** (time; default: 0) - time interval, used in limit-count
- **protocol** (ah all ddp egp encap esp ggp gre hmp icmp idpr-cmtp igmp ipencap ipip iso-tp4 ospf pup rdp rssf st tcp udp vmtvp xns-idp xtp; default: **any**) - protocol setting
 - **all** - cannot be used, if you want to match packets by ports
- **icmp-options** - ICMP options
- **content** (text; default: "") - the text packets should contain in order to match the rule
- **comment** (text; default: "") - a descriptive comment for the rule
- **connection** (text; default: "") - connection mark to match. Only packets marked in the mangle facility would be matched
- **limit-burst** (integer; default: 0) - allowed burst for the limit-count during the limit-time
limit-count (integer ; default: 0) - specifies how many times to use the rule during the limit-time period

src-netmask (IP address) - source netmask in decimal form x.x.x.x

dst-netmask (IP address) - destination netmask in decimal form x.x.x.x

src-port (integer : 0 ..65535) - source port number or range

* 0 - means all ports from 0 to 65535

dst-port (integer : 0 ..65535) - destination port number or range

* 0 - means all ports from 0 to 65535

tos (any | max-reliability | max-throughput | min-cost | min-delay | normal | integer ; default: any) - specifies a match for Type-of-Service field of an IP packet (see Firewall Filters manual for detailed description)

action (accept | redirect | nat ; default: accept) - action to undertake if a packet matched a particular dst-nat rule, one of the:

* accept - accept the packet without undertaking any action, except for mangle. No more rules are processed in the relevant list/chain

* redirect - redirects to the local address:port of the router. In this case, the to-dst-address argument value is not taken into account and it does not need to be specified, since the router's local address is used.

* nat - perform Network Address Translation. The to-dst-address should be specified (not required with action=redirect)

in-interface (name ; default: all) - interface the packet has entered the router through

* all - may include the local loopback interface for packets with destination to the router

to-dst-address (IP address ; default: 0.0.0.0) - destination IP address to replace original with

to-dst-port (integer : 0 ..65535 ; default: 0-65535) - destination port to replace original with

src-mac-address (MAC address ; default: 00:00:00:00:00:00) - host's MAC address the packet has been received from

Example

This example shows how to add a dst-NAT rule that gives access to the http server 192.168.0.4 on the local network via external address 192.168.0.4:

```
[admin@MikroTik] ip firewall dst-nat> add action=nat protocol=tcp \
... dst-address=10.0.0.217/32:80 to-dst-address=192.168.0.4
[admin@MikroTik] ip firewall dst-nat> print
Flags: X - disabled, I - invalid, D - dynamic
  0 src-address=0.0.0.0/0:0-65535 in-interface=all
  dst-address=10.0.0.217/32:80 protocol=tcp icmp-options=any:any flow=""
  connection="" content="" src-mac-address=00:00:00:00:00:00
  limit-count=0 limit-burst=0 limit-time=0s action=nat
  to-dst-address=192.168.0.4 to-dst-port=0-65535

[admin@MikroTik] ip firewall dst-nat>
```
Services, Protocols, and Ports

This document lists protocols and ports used by various MikroTik RouterOS services. It helps you to determine why your MikroTik router listens to certain ports, and what you need to block/allow in case you want to prevent or grant access to the certain services. Please see the relevant sections of the Manual for more explanations.

Home menu level: /ip service

Related Documents

- Firewall Filters
- Packet Marking (Mangle)
- Certificate Management

Modifying Service Settings

Home menu level: /ip service

Property Description

- **name** - service name
- **port** (integer: 1..65535) - the port particular service listens on
- **address** (IP address/mask; default: 0.0.0.0/0) - IP address(-es) from which the service is accessible
- **certificate** (name | none; default: none) - the name of the certificate used by particular service (absent for the services that do not need certificates)

Example
To set www service to use 8081 port accessible from the 10.10.10.0/24 network:

```
[admin@MikroTik] ip service> print
Flags: X - disabled, I - invalid
# NAME PORT ADDRESS CERTIFICATE
 0 telnet 23 0.0.0.0/0
 1 ftp 21 0.0.0.0/0
 2 www 80 0.0.0.0/0
 3 hotspot 8088 0.0.0.0/0
 4 ssh 22 0.0.0.0/0
 5 hotspot-ssl 443 0.0.0.0/0 hotspot
[admin@MikroTik] ip service> set www port=8081 address=10.10.10.0/24
[admin@MikroTik] ip service> print
Flags: X - disabled, I - invalid
# NAME PORT ADDRESS CERTIFICATE
 0 telnet 23 0.0.0.0/0
 1 ftp 21 0.0.0.0/0
 2 www 8081 10.10.10.0/24
 3 hotspot 8088 0.0.0.0/0
 4 ssh 22 0.0.0.0/0
 5 hotspot-ssl 443 0.0.0.0/0 hotspot
```

List of Services

Description

Below is the list of protocols and ports used by MikoTik RouterOS services. Some services require additional package to be installed, as well as to be enabled by administrator, *exempli gratia* bandwidth server.

<table>
<thead>
<tr>
<th>Port/Protocol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/tcp</td>
<td>File Transfer [Default Data]</td>
</tr>
<tr>
<td>21/tcp</td>
<td>File Transfer [Control]</td>
</tr>
<tr>
<td>22/tcp</td>
<td>SSH Remote Login Protocol (Only with security package)</td>
</tr>
<tr>
<td>23/tcp</td>
<td>Domain Name Server</td>
</tr>
<tr>
<td>53/tcp</td>
<td>Domain Name Server</td>
</tr>
<tr>
<td>67/udp</td>
<td>Bootstrap Protocol Server, DHCP Client (only with dhcp package)</td>
</tr>
<tr>
<td>68/udp</td>
<td>Bootstrap Protocol Client, DHCP Client (only with dhcp package)</td>
</tr>
<tr>
<td>80/tcp</td>
<td>World Wide Web HTTP</td>
</tr>
<tr>
<td>123/tcp</td>
<td>Network Time Protocol (Only with ntp package)</td>
</tr>
<tr>
<td>161/tcp</td>
<td>SNMP (Only with snmp package)</td>
</tr>
<tr>
<td>443/tcp</td>
<td>Secure Socket Layer Encrypted HTTP(Only with hotspot package)</td>
</tr>
<tr>
<td>500/udp</td>
<td>IKE protocol (Only with ipsec package)</td>
</tr>
<tr>
<td>179/tcp</td>
<td>Border Gateway Protocol (Only with routing</td>
</tr>
<tr>
<td>Port</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>1719/udp</td>
<td>h323gatestat (Only with telephony package)</td>
</tr>
<tr>
<td>1720/tcp</td>
<td>h323hostcall (Only with telephony package)</td>
</tr>
<tr>
<td>1723/tcp</td>
<td>pptp (Only with ppp package)</td>
</tr>
<tr>
<td>2000/tcp</td>
<td>bandwidth-test server</td>
</tr>
<tr>
<td>3986/tcp</td>
<td>proxy for winbox</td>
</tr>
<tr>
<td>3987/tcp</td>
<td>sslproxy for secure winbox (Only with security package)</td>
</tr>
<tr>
<td>5678/udp</td>
<td>MikroTik Neighbor Discovery Protocol</td>
</tr>
<tr>
<td>8080/tcp</td>
<td>HTTP Alternate (Only with web-proxy package)</td>
</tr>
<tr>
<td>/1</td>
<td>ICMP - Internet Control Message</td>
</tr>
<tr>
<td>/4</td>
<td>IP - IP in IP (encapsulation)</td>
</tr>
<tr>
<td>/47</td>
<td>GRE - General Routing Encapsulation (Only for PPTP and EoIP)</td>
</tr>
<tr>
<td>/50</td>
<td>ESP - Encapsulating Security Payload for IPv4 (Only with security package)</td>
</tr>
<tr>
<td>/51</td>
<td>AH - Authentication Header for IPv4 (Only with security package)</td>
</tr>
<tr>
<td>/89</td>
<td>OSPFFIGP - OSPF Interior Gateway Protocol</td>
</tr>
</tbody>
</table>
DHCP Client and Server

Document revision 2.5 (Mon Jul 19 07:06:08 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
Summary
Quick Setup Guide
Specifications
Description
Additional Documents
DHCP Client Setup
Description
Property Description
Command Description
Notes
Example
DHCP Client Lease
Description
Property Description
Example
DHCP Server Setup
Description
Property Description
Notes
Example
DHCP Networks
Property Description
Notes
DHCP Leases
Description
Property Description
Command Description
Notes
Example
DHCP Relay
Description
Property Description
Notes
Example
Question&Answer-Based Setup
Command Description
Notes
Example

General Information
Summary

The DHCP (Dynamic Host Configuration Protocol) is needed for easy distribution of IP addresses in a network. The MikroTik RouterOS implementation includes both - server and client parts and is compliant with RFC2131.

General usage of DHCP:

- IP assignment in LAN, cable-modem, and wireless systems
- Obtaining IP settings on cable-modem systems

IP addresses can be bound to MAC addresses using static lease feature.

DHCP server can be used with MikroTik RouterOS HotSpot feature to authenticate and account DHCP clients. See the HotSpot Manual for more information.

Quick Setup Guide

This example will show you how to setup DHCP-Server and DHCP-Client on MikroTik RouterOS.

- Setup of a DHCP-Server.
 1. Create an IP address pool

 /ip pool add name=dhcp-pool1 ranges=172.16.0.10-172.16.0.20

 2. Add a DHCP network which will concern to the network 172.16.0.0/12 and will distribute a gateway with IP address 172.16.0.1 to DHCP clients:

 /ip dhcp-server network add address=172.16.0.0/12 gateway=172.16.0.1

 3. Finally, add a DHCP server:

 /ip dhcp-server add interface=wlan1 address-pool=dhcp-pool

- Setup of the DHCP-Client (which will get a lease from the DHCP server, configured above).
 1. Add the DHCP client:

 /ip dhcp-client set interface=wlan1 enabled=yes

 2. Check whether you have obtained a lease:

 [admin@DHCP-Client] ip dhcp-client lease> print
 status: bound
 address: 172.16.0.20/12
 gateway: 172.16.0.1
 dhcp-server: 192.168.0.1
 primary-dns: 159.148.147.194
 expires: jun/24/2004 19:11:12
 [admin@DHCP-Client] ip dhcp-client lease>

Specifications

Packages required: dhcp
License required: level1
Home menu level: /ip dhcp-client , /ip dhcp-server , /ip dhcp-relay
Standards and Technologies: **DHCP**

Description

The DHCP protocol gives and allocates IP addresses to IP clients. DHCP is basically insecure and should only be used in trusted networks. DHCP server always listens on UDP 67 port, DHCP client - on UDP 68 port. The initial negotiation involves communication between broadcast addresses (on some phases sender will use source address of **0.0.0.0** and/or destination address of **255.255.255.255**). You should be aware of this when building firewall.

Additional Documents

- [ISC Dynamic Host Configuration Protocol (DHCP)](http://isc.org/dhcp)
- [DHCP mini-HOWTO](http://-building-firewalls.net/dhcp.html)
- [ISC DHCP FAQ](http://isc.org/dhcp/faq)

DHCP Client Setup

Home menu level: `/ip dhcp-client`

Description

The MikroTik RouterOS DHCP client may be enabled on one Ethernet-like interface at a time. The client will accept an address, netmask, default gateway, and two dns server addresses. The received IP address will be added to the interface with the respective netmask. The default gateway will be added to the routing table as a dynamic entry. Should the DHCP client be disabled or not renew an address, the dynamic default route will be removed. If there is already a default route installed prior the DHCP client obtains one, the route obtained by the DHCP client would be shown as invalid.

Property Description

- `add-default-route` (yes | no ; default: yes) - whether to add the default route to the gateway specified by the DHCP server
- `client-id` (text) - corresponds to the settings suggested by the network administrator or ISP. Commonly it is set to the client’s MAC address, but it may as well be any test string
- `enabled` (yes | no ; default: no) - whether the DHCP client is enabled
- `host-name` (text) - the host name of the client
- `interface` (name ; default: (unknown)) - any Ethernet-like interface (this includes wireless and EoIP tunnels)
- `use-peer-dns` (yes | no ; default: yes) - whether to accept the DNS settings advertized by DHCP server (they will appear in /ip dns submenu)

Command Description

- `renew` - renew current leases. If the renew operation was not successful, client tries to reinitialize lease (i.e. it starts lease request procedure (rebind) as if it had not received an IP address yet)
Notes

If **host-name** property is not specified, client's system identity will be sent in the respective field of DHCP request.

If **client-id** property is not specified, client's MAC address will be sent in the respective field of DHCP request.

If **use-peer-dns** property is enabled, the DHCP client will uncoditionally rewrite the settings in `/ip dns` submenu. In case two or more DNS servers were received, first two of them are set as primary and secondary servers respectively. In case one DNS server was received, it is put as primary server, and the secondary server is left intact.

Example

To enable DHCP client on **ether1** interface:

```
[admin@MikroTik] ip dhcp-client> set enabled=yes interface=ether1
[admin@MikroTik] ip dhcp-client> print
   enabled: yes
   interface: ether1
   host-name: ""
   client-id: ""
   add-default-route: yes
   use-peer-dns: yes
[admin@MikroTik] ip dhcp-client>
```

DHCP Client Lease

Home menu level: `/ip dhcp-client lease`

Description

This submenu shows the actual IP address lease received by the client

Property Description

- **address** (*read-only: IP address/mask*) - the address received
- **dhcp-server** (*read-only: IP address*) - IP address of the DHCP server that have given out the current lease
- **expires** (*read-only: text*) - expiration time of the lease
- **gateway** (*read-only: IP address*) - the gateway address received
- **primary-dns** (*read-only: IP address*) - the address of the primary DNS server received
- **secondary-dns** (*read-only: IP address*) - the address of the secondary DNS server received
- **status** (*read-only: "{" | searching... | requesting... | bound | renewing... | rebinding... }*) - the current state of DHCP client:
 - "{" - DHCP client is not enabled
 - **searching...** - the DHCP client is searching for DHCP server, but has not yet received an offer
• **requesting...** - the DHCP client has received an offer from a DHCP server, and requesting an IP address now

• **bound** - the DHCP client has received an IP address (status bound should also appear on the DHCP server)

• **renewing...** - the DHCP client is trying to renew the lease

• **rebinding...** - the renew operation has failed, and lease time is over, so the DHCP client is trying to request an IP address once again

Example

To check the obtained lease:

```
[admin@MikroTik] ip dhcp-client lease> print
status: bounded
address: 80.232.241.15/21
dhcp-server: 10.1.0.172
expires: oct/20/2002 09:43:50
gateway: 80.232.240.1
primary-dns: 195.13.160.52
secondary-dns: 195.122.1.59
[admin@MikroTik] ip dhcp-client lease>
```

DHCP Server Setup

Home menu level: `/ip dhcp-server`

Description

The router supports an individual server for each Ethernet-like interface. The MikroTik RouterOS DHCP server supports the basic functions of giving each requesting client an IP address/netmask lease, default gateway, domain name, DNS-server(s) and WINS-server(s) (for Windows clients) information (set up in the DHCP networks submenu)

In order DHCP server to work, you must set up also IP pools (do not inlude the DHCP server's IP address into the pool range) and DHCP networks.

Property Description

```plaintext
add-arp ( yes | no ; default: no ) - whether to add dynamic ARP entry:
  • no - either ARP mode should be enabled on that interface or static ARP entries should be administratively defined in /ip arp submenu

address-pool ( name | static-only ; default: static-only ) - IP pool, from which to take IP addresses for clients
  • static-only - allow only the clients that have a static lease (i.e. no dynamic addresses will be given to clients, only the ones added in lease submenu)

authoritative ( yes | no ; default: no ) - whether the DHCP server is the only one DHCP server for that network

interface ( name ) - Ethernet-like interface name

lease-time ( time ; default: 72h ) - the time that a client may use an address. The client will try to
```
renew this address after a half of this time and will request a new address after time limit expires

name (name) - reference name

relay (IP address ; default: 0.0.0.0) - the IP address of the relay this DHCP server should process requests from:

- **0.0.0.0** - the DHCP server will be used only for direct requests from clients (no DHCP really allowed)
- **255.255.255.255** - the DHCP server should be used for any incoming request from a DHCP relay except for those, which are processed by another DHCP server that exists in the /ip dhcp-server submenu

src-address (IP address ; default: 0.0.0.0) - the address which the DHCP client must send requests to in order to renew an IP address lease. If there is only one static address on the DHCP server interface and the source-address is left as 0.0.0.0, then the static address will be used. If there are multiple addresses on the interface, an address in the same subnet as the range of given addresses should be used

Notes

If using both - Universal Client and DHCP Server on the same interface, client will only receive a DHCP lease in case it is directly reachable by its MAC address through that interface (some wireless bridges may change client’s MAC address).

If **authoritative** property is set to yes, the DHCP server is sending rejects for the leases it cannot bind or renew. It also may (although not always) help to prevent the users of the network to run illicitly their own DHCP servers disturbing the proper way this network should be functioning.

If **relay** property of a DHCP server is not set to 0.0.0.0 the DHCP server will not respond to the direct requests from clients.

Example

To add a DHCP server to the **ether1** interface, lending IP addresses from **dhcp-clients** IP pool for 2 hours:

```bash
[admin@MikroTik] ip dhcp-server> add name=dhcp-office disabled=no address-pool=dhcp-clients interface=ether1 lease-time=2h
[admin@MikroTik] ip dhcp-server> print
Flags: X - disabled, I - invalid
 #   NAME   INTERFACE  RELAY  ADDRESS-POOL LEASE-TIME ADD-ARP
0  dhcp-office  ether1  dhcp-clients  2h    no

[admin@MikroTik] ip dhcp-server>
```

DHCP Networks

Home menu level: `/ip dhcp-server network`

Property Description

address (IP address/mask) - the network DHCP server(s) will lend addresses from

boot-file-name (text) - Boot file name
dns-server (text) - the DHCP client will use these as the default DNS servers. Two comma-separated DNS servers can be specified to be used by DHCP client as primary and secondary DNS servers.

domain (text) - the DHCP client will use this as the 'DNS domain' setting for the network adapter.

gateway (IP address; default: 0.0.0.0) - the default gateway to be used by DHCP clients.

netmask (integer: 0 ..32; default: 0) - the actual network mask to be used by DHCP client.
 • 0 - netmask from network address is to be used.

next-server (IP address) - IP address of next server to use in bootstrap.

wins-server (text) - the Windows DHCP client will use these as the default WINS servers. Two comma-separated WINS servers can be specified to be used by DHCP client as primary and secondary WINS servers.

Notes

The address field uses netmask to specify the range of addresses the given entry is valid for. The actual netmask clients will be using is specified in netmask property.

DHCP Leases

Home menu level: /ip dhcp-server lease

Description

DHCP server lease submenu is used to monitor and manage server's leases. The issued leases is showed here as dynamic entries. You can also add static leases to issue the definite client (determined by MAC address) the specified IP address.

Generally, the DHCP lease it allocated as follows:

1. an unused lease is in waiting state
2. if a client asks for an IP address, the server chooses one
3. if the client will receive statically assigned address, the lease becomes offered, and then bound with the respective lease time
4. if the client will receive a dynamic address (taken from an IP address pool), the router sends a ping packet and waits for answer for 0.5 seconds. During this time, the lease is marked testing
5. in case, the address does not respond, the lease becomes offered, and then bound with the respective lease time
6. in other case, the lease becomes busy for the lease time (there is a command to retest all busy addresses), and the client's request remains unanswered (the client will try again shortly)

Then a client may free the leased address. Then the dynamic lease is removed, and the allocated address is returned to the address pool. But the static lease becomes busy until the client will reacquire the address.

Note that the IP addresses assigned statically are not probed.

Property Description
address (IP address; default: 0.0.0.0) - lended IP address for the client

expires-after (read-only: time) - time until lease expires

lease-time (time; default: 0s) - time that the client may use an address
 • 0s - lease will never expire

mac-address (MAC address; default: 00:00:00:00:00:00) - MAC address of the client. It is the base for static lease assignment

rx-rate (integer; default: 0) - maximal receive bitrate to the client (for users it is upload bitrate)
 • 0 - no limitation

server (read-only: name) - server name which serves this client

status (read-only: waiting | testing | busy | offered | bound) - lease status:
 • waiting - not used static lease
 • testing - testing whether this address is used or not (only for dynamic leases) by pinging it with timeout of 0.5s
 • busy - this address is assigned statically to a client or already exists in the network, so it can not be leased
 • offered - server has offered this lease to a client, but did not receive confirmation from the client
 • bound - server has received client's confirmation that it accepts offered address, it is using it now and will free the address not later, than the lease time will be over

tx-rate (integer; default: 0) - maximal transmit bitrate to the client (for users it is download bitrate)
 • 0 - no limitation

Command Description

check-status - Check status of a given busy dynamic lease, and free it in case of no response

Notes

Even though client address may be changed (with adding a new item) in lease print list, it will not change for the client. It is true for any changes in the DHCP server configuration because of the nature of the DHCP protocol. Client tries to renew assigned IP address only when half a lease time is past (it tries to renew several times). Only when full lease time is past and IP address was not renewed, new lease is asked (rebind operation).

the deault mac-address value will never work! You should specify a correct MAC address there.

Example

To assign 10.5.2.100 static IP address for the existing DHCP client (shown in the lease table as item #0):

```
[admin@MikroTik] ip dhcp-server lease> print
Flags: X - disabled, H - hotspot, D - dynamic
   # ADDRESS       MAC-ADDRESS       EXPIRES-AFTER SERVER STATUS
0 D 10.5.2.90    00:04:EA:C6:0E:40 1h48m59s     switch bound
```
DHCP Relay

Home menu level: /ip dhcp-relay

Description

DHCP Relay is just a proxy that is able to receive a DHCP request and resend it to the real DHCP server.

Property Description

dhcp-server (text) - list of DHCP servers' IP addresses which should be the DHCP requests forwarded to

interface (name) - interface name the DHCP relay will be working on

local-address (IP address; default: 0.0.0.0) - the unique IP address of this DHCP relay needed for DHCP server to distinguish relays:
 • 0.0.0.0 - the IP address will be chosen automatically

name (name) - descriptive name for relay

Notes

DHCP relay does not choose the particular DHCP server in the dhcp-server list, it just sent to all the listed servers.

Example

To add a DHCP relay named relay on ether1 interface resending all received requests to the 10.0.0.1 DHCP server:

 [admin@MikroTik] ip dhcp-relay> add name=relay interface=ether1 \ dhcp-server=10.0.0.1 disabled=no

[admin@MikroTik] ip dhcp-relay> print

 # NAME INTERFACE DHCP-SERVER LOCAL-ADDRESS
 0 relay ether1 10.0.0.1 0.0.0.0

[admin@MikroTik] ip dhcp-relay>

Question&Answer-Based Setup

Command name: /ip dhcp-server setup
Command Description

`dhcp server interface (name)` - interface to run DHCP server on

`dhcp address space (IP address/mask ; default: 192.168.0.0/24)` - network the DHCP server will lease to the clients

`gateway (IP address ; default: 0.0.0.0)` - the default gateway of the leased network

`dhcp relay (IP address ; default: 0.0.0.0)` - the IP address of the DHCP relay between the DHCP server and the DHCP clients

`addresses to give out (text)` - the pool of IP addresses DHCP server should lease to the clients

`dns servers (IP address)` - IP address of the appropriate DNS server to be propagated to the DHCP clients

`lease time (time ; default: 3d)` - the time the lease will be valid

Notes

Depending on current settings and answers to the previous questions, default values of following questions may be different. Some questions may disappear if they become redundant (for example, there is no use of asking for 'relay' when the server will lend the directly connected network)

Example

To configure DHCP server on `ether1` interface to lend addresses from 10.0.0.2 to 10.0.0.254 which belong to the `10.0.0.0/24` network with `10.0.0.1` gateway and `159.148.60.2` DNS server for the time of 3 days:

```
[admin@MikroTik] ip dhcp-server> setup
Select interface to run DHCP server on
dhcp server interface: ether1
Select network for DHCP addresses
dhcp address space: 10.0.0.0/24
Select gateway for given network
gateway for dhcp network: 10.0.0.1
Select pool of ip addresses given out by DHCP server
addresses to give out: 10.0.0.2-10.0.0.254
Select DNS servers
dns servers: 159.148.60.2
Select lease time
lease time: 3d
[admin@MikroTik] ip dhcp-server>
```

The wizard has made the following configuration based on the answers above:

```
[admin@MikroTik] ip dhcp-server> print
Flags: X - disabled, I - invalid
#   NAME   INTERFACE RELAY ADDRESS-POOL LEASE-TIME ADD-ARP
 0  dhcp1  ether1  0.0.0.0  dhcp_pool1  3d  no
[admin@MikroTik] ip dhcp-server> network print
```
ADDRESS GATEWAY DNS-SERVER WINS-SERVER DOMAIN
0 10.0.0.0/24 10.0.0.1 159.148.60.2

[admin@MikroTik] ip dhcp-server> /ip pool print
NAME RANGES
0 dhcp_pool1 10.0.0.2-10.0.0.254

[admin@MikroTik] ip dhcp-server>

Copyright 1999-2005, MikroTik. All rights reserved. Mikrotik, RouterOS and RouterBOARD are trademarks of Mikrotikls SIA. Other trademarks and registered trademarks mentioned herein are properties of their respective owners.
DNS Client and Cache

Summary

DNS cache is used to minimize DNS requests to an external DNS server as well as to minimize DNS resolution time. This is a simple recursive DNS server with local items.

Specifications

Packages required: system
License required: level1
Home menu level: /ip dns
Standards and Technologies: DNS
Hardware usage: Not significant

Related Documents

- Package Management
- HotSpot Gateway
Description

The MikroTik router with DNS cache feature enabled can be set as a primary DNS server for any DNS-compliant clients. Moreover, MikroTik router can be specified as a primary DNS server under its dhcp-server settings. When the DNS cache is enabled, the MikroTik router responds to DNS TCP and UDP requests on port 53.

Additional Documents

- http://www.freesoft.org/CIE/Course/Section2/3.htm
- [RFC1035](https://tools.ietf.org/html/rfc1035)

Client Configuration and Cache Setup

Home menu level: `/ip dns`

Description

DNS client is used to provide domain name resolution for router itself as well as for the P2P clients connected to the router.

Property Description

allow-remote-requests (yes | no) - specifies whether to allow network requests
primary-dns (IP address ; default: 0.0.0.0) - primary DNS server
secondary-dns (IP address ; default: 0.0.0.0) - secondary DNS server

cache-size (integer : 512 ..10240 ; default: 2048 kB) - specifies the size of DNS cache in kB

cache-max-ttl (time ; default: 7d) - specifies maximum time-to-live for cache records. In other words, cache records will expire after cache-max-ttl time.

cache-used (read-only: integer) - displays the currently used cache size in kB

Notes

If the property use-peer-dns under `/ip dhcp-client` is set to yes then primary-dns under `/ip dns` will change to a DNS address given by DHCP Server.

Example

To set 159.148.60.2 as the primary DNS server, do the following:

```
[admin@MikroTik] ip dns> set primary-dns=159.148.60.2
[admin@MikroTik] ip dns> print
  resolve-mode: remote-dns
  primary-dns: 159.148.60.2
  secondary-dns: 0.0.0.0
```
Cache Monitoring

Home menu level: /ip dns cache

Property Description

- **name** *(read-only: name)* - DNS name of the host
- **address** *(read-only: IP address)* - IP address of the host
- **ttl** *(time)* - remaining time-to-live for the record

Static DNS Entries

Home menu level: /ip dns static

Description

The MikroTik RouterOS has an embedded DNS server feature in DNS cache. It allows you to link the particular domain names with the respective IP addresses and advertise these links to the DNS clients using the router as their DNS server.

Property Description

- **name** *(text)* - DNS name to be resolved to a given IP address
- **address** *(IP address)* - IP address to resolve domain name with

Example

To add a static DNS entry for **www.example.com** to be resolved to **10.0.0.1** IP address:

```
[admin@MikroTik] ip dns static> add name www.example.com address=10.0.0.1
[admin@MikroTik] ipdns static> print
# NAME ADDRESS    TTL
0  aaa.aaa.a  123.123.123.123  1d
1  www.example.com  10.0.0.1    1d
```

Flushing DNS cache

Command name: /ip dns cache flush

Command Description

flush - clears internal DNS cache

Example

```
[admin@MikroTik] ip dns> cache flush
[admin@MikroTik] ip dns> print primary-dns: 159.148.60.2 secondary-dns: 0.0.0.0
```
allow-remote-requests: no
 cache-size: 2048 kB
 cache-max-ttl: 7d
 cache-used: 10 kB
[admin@MikroTik] ip dns>
HotSpot Gateway

Document revision 3.6 (Wed Mar 16 11:32:59 GMT 2005)

This document applies to MikroTik RouterOS V2.8

Table of Contents

- **Table of Contents**
- **General Information**
 - Summary
 - Specifications
 - Related Documents
 - Description
- **Question&Answer-Based Setup**
 - Command Description
 - Notes
 - Example
- **HotSpot Gateway Setup**
 - Property Description
 - Command Description
 - Notes
 - Example
- **HotSpot User Profiles**
 - Description
 - Property Description
 - Notes
 - Example
- **HotSpot Users**
 - Property Description
 - Notes
 - Example
- **HotSpot Active Users**
 - Description
 - Property Description
 - Notes
 - Example
- **HotSpot Remote AAA**
 - Property Description
 - Notes
 - Example
- **HotSpot Server Settings**
 - Description
 - Property Description
 - Notes
 - Example
- **HotSpot Cookies**
 - Description
 - Property Description
 - Notes
General Information

Summary

The MikroTik HotSpot Gateway enables providing of public network access for clients using wireless or wired network connections.

HotSpot Gateway features:

- authentication of clients using local client database, or RADIUS server
- accounting using local database, or RADIUS server
- Walled-garden system (accessing some web pages without authorization)
- HotSpot Gateway can provide access for authorized clients using two different methods:
 - `dhcp-pool` method uses DHCP server to assign temporary (not valid in outer networks) IP addresses to clients prior to authentication. After successful authentication the DHCP server assigns an IP address to the client from a different IP pool. This method may be used to assign a fixed IP address to each user (i.e. no matter which computer does the user use, he/she will always use the same IP address)
 - `enabled-address` method enables traffic for authorized clients without need of IP address change
- traffic and connection time accounting
- clients can be limited by:
 - download/upload speed (tx/rx bitrate)
 - connection time
 - downloaded/uploaded traffic (bytes)
Universal Client feature may be used with HotSpot enabled-address method to provide IP network services regardless of client computers' IP network settings

Specifications

Packages required: *hotspot, dhcp (optional)*

License required: *level1 (Limited to 1 active user), level3 (Limited to 1 active user), level4 (Limited to 200 active users), level5 (Limited to 500 active users), level6*

Home menu level: */ip hotspot*

Standards and Technologies: *ICMP, DHCP*

Hardware usage: *Not significant*

Related Documents

- Package Management
- IP Addresses and ARP
- IP Pools
- DHCP Client and Server
- AAA
- Firewall Filters
- Packet Marking (Mangle)
- Network Address Translation
- Connection Tracking and Service Ports

Description

MikroTik HotSpot Gateway should have at least two network interfaces:

1. HotSpot interface, which is used to connect HotSpot clients
2. LAN/WAN interface, which is used to access network resources. For example, DNS and RADIUS server(s) should be accessible

The diagram below shows a sample HotSpot setup.

The HotSpot interface should have an IP address assigned to it. To use *dhcp-pool* method, there should be two IP addresses: one as the gateway for the temporary IP address pool used prior to authentication, and second as the gateway for the permanent IP address pool used by authenticated clients. **Note**, that you have to provide routing for these address pools, unless you plan to use masquerading (source NAT). Physical network connection has to be established between the HotSpot user’s computer and the gateway. It can be wireless (the wireless card should be registered to AP), or wired (the NIC card should be connected to a hub or a switch).

In *dhcp-pool* case, the arp mode of the HotSpot interface should be set to **reply-only** to prevent network access using static IP addresses (the DHCP server should add static ARP entries for each DHCP client). **Note** also that Universal Client feature can not be used with *dhcp-pool* method.
Introduction to HotSpot

HotSpot is a way to authorize users to access some network resources. It does not provide traffic encryption. To log in, users may use almost any web browser (either HTTP or HTTPS protocol), so they are not required to install additional software. The gateway is accounting the uptime and amount of traffic each of its clients have used, and also can send this information to a RADIUS server. The HotSpot system may limit each particular user's bitrate, total amount of traffic, uptime and some other parameters mentioned further in this document.

The HotSpot system is targeted to provide authentication within a local network, but may as well be used to authorize access from outer networks to local networks. Configuring firewall rules, it is possible to exclude some IP networks and protocols from authentication and/or accounting. The walled garden feature allows users to access some web pages without the need of prior authentication.

HotSpot system is rather simple by itself, but it must be used in conjunction with other features of RouterOS. Using many RouterOS features together it is possible to make a Plug-and-Play access system.

There are two login methods for HotSpot users - dhcp-pool and enabled-address. The enabled-address is the preferred one in most cases, but if you want to bind together usernames and IP addresses (i.e. if you want a user to get the same IP address no matter which computer is he/she using), then the dhcp-pool method is the only possibility.

The Initial Contact

First, a client gets an IP address. It may be set statically or be given out by a DHCP server. If the client tries to access network resources using a web browser, the destination NAT rule redirects that TCP connection request to the HotSpot servlet (TCP port 8088 for HTTP by default; HTTPS may also be used on its default TCP port 443). This brings up the HotSpot Welcome/Login page where the user should input his/her username and password (the page may be customized as described later on).

It is very important to understand that login method for a particular user is determined only after the user is authenticated and no assumptions are made by the router before.

Walled Garden

It is possible to specify a number of domains which can be accessed without prior registration. This feature is called Walled Garden. When a not logged-in user sends a HTTP request to an allowed web page, the HotSpot gateway redirects the request to the original destination (or to a specified parent proxy). When a user is logged in, there is no effect of this table for him/her.

To implement the Walled Garden feature an embedded web proxy server has been designed, so all the requests from not authorized users are really going through this proxy. Note that the embedded proxy server does not have caching function yet. Also note that this embedded proxy server is in the hotspot software package and does not require web-proxy package.

Authentication
In case of HTTP protocol, HotSpot servlet generates an MD5 hash challenge to be used together with the user's password for computing the string which will be sent to the HotSpot gateway. The hash result together with username is sent over network to HotSpot service (so, password is never sent in plain text over IP network). On the client side, MD5 algorithm is implemented in JavaScript applet, so if a browser does not support JavaScript (like, for example, Internet Explorer 2.0 or some PDA browsers), it will not be able to authenticate users. It is possible to allow unencrypted passwords to be accepted, but it is not recommended to use this feature.

If HTTPS protocol is used, HotSpot user just send his/her password without additional hashing. In either case, HTTP POST method (if not possible, then - HTTP GET method) is used to send data to the HotSpot gateway.

HotSpot can authenticate users using local user database or a RADIUS server (local database is consulted first, then - a RADIUS server). If authentication is done locally, profile corresponding to that user is used, otherwise (in case of RADIUS) default profile is used to set default values for parameters, which are not set in RADIUS access-accept message. For more information on how the interaction with a RADIUS server works, see the respective manual section.

If authentication by HTTP cookie is enabled, then after each successful login cookie is sent to web browser and the same cookie is added to active HTTP cookie list. Next time a user will try to log in, web browser will send http cookie. This cookie will be compared to the one stored on the HotSpot gateway and only if there is the same source MAC address and the same randomly generated ID, user will be automatically logged in. Otherwise, the user will be prompted to log in, and in the case authentication was successful, old cookie will be removed from the local HotSpot active cookie list and the new one with different random ID and expiration time will be added to the list and sent to the web browser.

RADIUS authentication is CHAP by default, but it is possible to force the HotSpot gateway to use PAP. To do this, you should enable unencrypted passwords, and remove the possibility for the servlet to hash the passwords (see Customizing HotSpot servlet chapter on how to do it).

Authorization

One of the two login methods is to be used for each client individually (you may choose one or allow it to be done automatically in user profile configuration). The enabled-address method is the preferred one, so if it is configured correctly and the client has a proper IP address (that matches the one set in the user database), this method will be used. If the enabled-address method is not enabled or the client's IP address should be changed, the HotSpot Gateway tries to use dhcp-pool method. In that case, MikroTik HotSpot Gateway’s DHCP server tries to change the DHCP address lease the client might have received before the authentication. It is possible to specify what IP addresses each particular user will receive after he/she logs in (that way a user will always get the same IP no matter what computer he/she has logged in from).

Address assignment with dhcp-pool login method

To create a HotSpot infrastructure with dhcp-pool method, DHCP server should be configured to lease IP addresses from a temporary IP address pool for a very short period of time (lease time at about 14 seconds; lesser values may cause problems with some DHCP clients). This temporary subnet should have some restrictions, so that the users received a temporary IP address could only access the HotSpot login page.
Once a user is authenticated, the HotSpot gateway changes the lease assigned to the user so that he/she will receive an IP address from a different IP address pool when the lease time of the current temporary lease will be over (it is not possible to recall DHCP lease, so the address will only change when the temporary lease expires).

Accounting

The HotSpot system makes user accounting through firewall rules. You should create a hotspot firewall chain, and the system will put there two dynamic rules for each active user (one for upload, and one for download). You should make all the traffic you need accounting for to pass through this firewall table.

Question&Answer-Based Setup

Command name: `/ip hotspot setup`

Command Description

- **address pool of hotspot network** *(name)* - IP address pool for the HotSpot network
- **address pool of temporary network** *(name)* - IP address pool for the temporary HotSpot network
- **another port for service** *(integer; default: 4430)* - if there is already a service on the 443 TCP port, setup will move that service on another port, so that HotSpot secure authentication page would be on standard port for SSL
- **another port for service** *(integer; default: 8081)* - another port for www service (so that hotspot service could be put on port 80)
- **dns name** *(text)* - DNS domain name of the HotSpot gateway
- **dns servers** *(IP address|IP address)* - DNS servers for HotSpot clients
- **enable universal client** *(yes | no; default: no)* - whether to enable Universal Client on the HotSpot interface
- **hotspot interface** *(name)* - interface to run HotSpot on
- **import and setup certificate** *(yes | no; default: yes)* - if the setup should try to import and set up a certificate
- **interface already configured** *(yes | no; default: no)* - whether to add hotspot authentication for the existing interface setup or otherwise interface setup should be configured from the scratch
- **ip address of smtp server** *(IP address; default: 0.0.0.0)* - IP address of the SMTP server to redirect SMTP requests (TCP port 25) to
 - 0.0.0.0 - no redirect
- **local address of hotspot network** *(IP address; default: 10.50.50.1)* - HotSpot address for the interface
- **local address of temporary network** *(IP address; default: 192.168.0.0)* - temporary HotSpot address for the interface (for dhcp-pool method)
- **login method** *(dhcp-pool|enabled-address|smart; default: enabled-address)* - login method to use
- **masquerade hotspot network** *(yes | no; default: yes)* - whether to masquerade the HotSpot network
masquerade temporary network (yes | no; default: yes) - whether to masquerade the temporary network

name of local hotspot user (text; default: admin) - username of one automatically created user

passphrase (text) - the passphrase of the certificate

password for the user (text) - password for the automatically created user

select certificate (name) - which certificate to use

use local dns cache (yes | no) - whether to redirect all DNS requests (UDP port 53) to the local DNS cache

use ssl (yes | no; default: no) - whether to use secure SSL authentication

use transparent web proxy (yes | no; default: no) - whether to use transparent web proxy for hotspot clients

Notes

Depending on current settings and answers to the previous questions, default values of following questions may be different. Some questions may disappear if they become redundant (for example, there is no use of setting up temporary network when login method is enabled-address)

If Universal Client is enabled, and DNS cache is not used, DNS requests are redirected to the first DNS server configured.

Example

To configure HotSpot on ether1 interface (which is already configured), enabling transparent web proxy and adding user admin with password rubbish:

```
[admin@MikroTik] ip hotspot> setup
Select interface to run HotSpot on
hotspot interface: ether1
Use SSL authentication?
use ssl: no
Add hotspot authentication for existing interface setup?
interface already configured: yes
Create local hotspot user
name of local hotspot user: admin
password for the user: rubbish
Use transparent web proxy for hotspot clients?
use transparent web proxy: yes
[admin@MikroTik] ip hotspot>
```

HotSpot Gateway Setup

Home menu level: /ip hotspot

Property Description

allow-unencrypted-passwords (yes | no; default: no) - whether to authenticate user if plain-text
password is received

auth-http-cookie (yes | no; default: no) - defines whether HTTP authentication by cookie is enabled

auth-mac (yes | no; default: no) - defines whether authentication by Ethernet MAC address is enabled

auth-mac-password (yes | no; default: no) - use MAC address as a password if MAC authorization is enabled

auth-requires-mac (yes | no; default: yes) - whether to require client's IP address to resolve to MAC address (i.e., whether to require that all the clients are in the same Ethernet-like network (as opposed to IP network, Ethernet-like network is bounded by routers) as the HotSpot gateway)

dns-name (text) - DNS name of the HotSpot server

hotspot-address (IP address; default: 0.0.0.0) - IP address for HotSpot service (used for www access)

http-cookie-lifetime (time; default: 1d) - validity time of HTTP cookies

login-mac-universal (yes | no; default: no) - whether to log in every host of Universal client instantly in case it has its MAC address listed in HotSpot user list

parent-proxy (IP address; default: 0.0.0.0) - the address of the proxy server the HotSpot service will use as a parent proxy

split-user-domain (yes | no; default: no) - whether to split username from domain name when the username is given in "user@domain" or in "domain\user" format

status-autorefresh (time; default: 1m) - WWW status page autorefresh time

universal-proxy (yes | no; default: no) - whether to intercept the requests to HTTP proxy servers

use-ssl (yes | no; default: no) - whether the servlet allows only HTTPS:

- yes - the registration may only occur using the Secure HTTP (HTTPS) protocol
- no - the registration may be accomplished using both HTTP and HTTPS protocols

Command Description

reset-html - overwrite the existing HotSpot servlet with the original HTML files. It is used if you have changed the servlet and it is not working after that.

Notes

If **dns-name** property is not specified, **hotspot-address** is used instead. If **hotspot-address** is also absent, then both are to be detected automatically.

If **auth-mac** is enabled, then a client is not prompted for username and password if the MAC address of this computer is in the HotSpot user database (either local or on RADIUS). Nevertheless this method does not excuse clients from the common login procedure, just from filling out the registration form (i.e., regardless of whether MAC authorization is applicable for a client, he/she should open the Login page in order to get registered). The only exception is the users of Universal Client - if **login-mac-universal** property is enabled, they will not even have to open a web browser if their MAC addresses are listed in the user database.

The **universal-proxy** feature automatically creates DST-NAT rules to redirect requests of each particular user to a proxy server he/she is using (it may be set in his/her settings to use an unknown...
to us proxy server) to the local embedded proxy server. This feature may be used in combination with Universal Client feature to provide Internet access for users regardless of their network settings.

allow-unencrypted-passwords property makes it possible to authenticate with the browsers not supporting JavaScript (for example, Internet Explorer 2.0 or some PDA browsers). It is also possible to log in using telnet connection, just requesting the page /login?user=username&password=password. An another use of this property is the possibility of hard-coded authentication information in the servlet's login page simply creating the appropriate link.

To enable PAP RADIUS authentication, you should set in the hotspot configuration allow-unencrypted-password=yes and you should remove %main% variable from the login.html file.

auth-requires-mac property makes it possible to make a 'reverse HotSpot' - to authenticate users accessing the local network from the Internet.

Example

To enable cookie support:

```
[admin@MikroTik] ip hotspot> set auth-http-cookie=yes
[admin@MikroTik] ip hotspot> print
    use-ssl: no
    hotspot-address: 0.0.0.0
    dns-name: ""
    status-autorefresh: 1m
    universal-proxy: no
    parent-proxy: 0.0.0.0:0
    auth-requires-mac: yes
    auth-mac: no
    auth-mac-password: no
    auth-http-cookie: yes
    http-cookie-lifetime: 1d
    allow-unencrypted-passwords: no
    login-mac-universal: no
    split-user-domain: no
[admin@MikroTik] ip hotspot>
```

HotSpot User Profiles

Home menu level: /ip hotspot profile

Description

HotSpot User profiles are used for common user settings. Profiles are like user groups, they are grouping users with the same limits.

Property Description

idle-timeout (time ; default: 0s) - idle timeout (maximal period of inactivity) for client
 • 0 - no timeout

incoming-filter (name) - name of the firewall chain applied to incoming packets
keepalive-timeout (time; default: 2m) - keepalive timeout for client
 * 0 - no timeout

login-method - the login method user will be using
 * dhcp-pool - login by changing IP address via DHCP server
 * enabled-address - login by enabling access for client's existing IP address
 * smart - choose best login method for each case

mark-flow (name) - traffic from authorized users will be marked by firewall mangle with this flow name

name (name) - profile reference name

outgoing-filter (name) - name of the firewall chain applied to outgoing packets

rx-bit-rate (integer; default: 0) - receive bitrate (for users it is upload bitrate)
 * 0 - no limitation

session-timeout (time; default: 0s) - session timeout (maximal session time) for client
 * 0 - no timeout

shared-users (integer; default: 1) - maximal number of simultaneously logged in users with the same username

tx-bit-rate (integer; default: 0) - transmit bitrate (for users it is download bitrate)
 * 0 - no limitation

Notes

To use enabled-address method, mark-flow should be set. To use dhcp-pool method, dhcp software package must be installed

idle-timeout is used to detect, that client is not using outer networks (e.g. Internet), i.e., there is NO TRAFFIC coming from that client and going through the router. keepalive-timeout is used to detect, that the computer of the client is still alive and reachable. If check will fail during this period, client will be logged out. session-timeout is an unconditional uptime limit

To choose the login method to be used if smart method is set as the value of login-method property, the following algorithm is used:

* If a client has a dynamic DHCP address lease received from the router, correct HotSpot server is set for the DHCP server issued that lease, and the client has specific IP address set in the /ip hotspot user configuration, dhcp-pool method will be used
* else, if mark-flow property is defined in the client's profile), enabled-address method will be used
* else, if the client has a dynamic DHCP lease, dhcp-pool method will be used
* else, an error message will be displayed, and the client will not be logged in

Example

To use enabled-address method that uses logged-in mark and logs a client off if he disappears for more then a minute:
[admin@MikroTik] ip hotspot profile> set default login-method=enabled-address \
... mark-flow=logged-in keepalive-timeout=1m
[admin@MikroTik] ip hotspot profile> print
Flags: * - default
0 * name="default" session-timeout=0s idle-timeout=0s only-one=yes tx-bit-rate=0 rx-bit-rate=0 incoming-filter="" outgoing-filter="" mark-flow="logged-in" login-method=enabled-address keepalive-timeout=1m

[admin@MikroTik] ip hotspot profile>

To define an additional profile that will also limit download speed to 64 kilobyte/s and upload data rate to 32 kilobyte/s, and call it **limited**:

[admin@MikroTik] ip hotspot profile> add copy-from=default tx-bit-rate=65536 \
... rx-bit-rate=32768 name=limited
[admin@MikroTik] ip hotspot profile> print
Flags: * - default
0 * name="default" session-timeout=0s idle-timeout=0s only-one=yes tx-bit-rate=0 rx-bit-rate=0 incoming-filter="" outgoing-filter="" mark-flow="logged-in" login-method=enabled-address keepalive-timeout=1m
1 name="limited" session-timeout=0s idle-timeout=0s only-one=yes tx-bit-rate=65536 rx-bit-rate=32768 incoming-filter="" outgoing-filter="" mark-flow="logged-in" login-method=enabled-address keepalive-timeout=1m

[admin@MikroTik] ip hotspot profile>

HotSpot Users

Home menu level: `/ip hotspot user`

Property Description

- **address** (*IP address* ; default: `0.0.0.0`) - static IP address. If not 0.0.0.0, client will always get the same IP address. It implies, that only one simultaneous login for that user is allowed
- **bytes-in** (*read-only: integer*) - total amount of bytes received from user
- **bytes-out** (*read-only: integer*) - total amount of bytes sent to user
- **limit-bytes-in** (*integer* ; default: `0`) - maximum amount of bytes user can transmit
 - 0 - no limit
- **limit-bytes-out** (*integer* ; default: `0`) - maximum amount of bytes user can receive
 - 0 - no limit
- **limit-uptime** (*time* ; default: `0s`) - total uptime limit for user (pre-paid time)
 - 0s - no limit
- **mac-address** (*MAC address* ; default: `00:00:00:00:00:00`) - static MAC address. If not 00:00:00:00:00:00, client is allowed to login only from that MAC address
- **name** (*name*) - user name
- **packets-in** (*read-only: integer*) - total amount of packets received from user
- **packets-out** (*read-only: integer*) - total amount of packets sent to user
- **password** (*text*) - user password
profile (name ; default: default) - user profile

routes (text) - routes that are to be registered on the HotSpot gateway when the client is connected. The route format is: "dst-address gateway metric" (for example, "10.1.0.0/24 10.0.0.1 1"). Several routes may be specified separated with commas

uptime (read-only; time) - total time user has been logged in

Notes

If auth-mac property is enabled, clients' MAC addresses (written with CAPITAL letters) can be used as usernames. If auth-mac-password is set to no, there should be no password for that users. Otherwise, the password should be equal to the username. When a client is connecting, his/her MAC address is checked first. If there is a user with that MAC address, the client is authenticated as this user. If there is no match, client is asked for username and password.

The address property is used only for dhcp-pool login method to tell it DHCP server. If a user already has a permanent IP address (as it is happening when enabled-address method is used), this property will just be ignored.

The byte limits are total limits for each user (not for each session as at /ip hotspot active). So, if a user has already downloaded something, then session limit will show the total limit - (minus) already downloaded. For example, if download limit for a user is 100MB and the user has already downloaded 30MB, then session download limit after login at /ip hotspot active will be 100MB - 30MB = 70MB.

Should a user reach his/her limits (bytes-in >= limit-bytes-in or bytes-out >= limit-bytes-out), he/she will not be able to log in anymore.

The statistics is updated if a user is authenticated via local user database each time he/she logs out. It means, that if a user is currently logged in, then the statistics will not show current total values. Use /ip hotspot active submenu to view the statistics on the current user sessions.

Example

To add user Ex with password Ex that is allowed to log in only with 01:23:45:67:89:AB MAC address and is limited to 1 hour of work:

[admin@MikroTik] ip hotspot user> add name=Ex password=Ex \
... mac-address=01:23:45:67:89:AB limit-uptime=1h
[admin@MikroTik] ip hotspot user> print
Flags: X - disabled
NAME ADDRESS MAC-ADDRESS PROFILE UPTIME
 0 Ex 0.0.0.0 01:23:45:67:89:AB default 0s
[admin@MikroTik] ip hotspot user> print detail
Flags: X - disabled
 0 name="Ex" password="Ex" address=0.0.0.0 mac-address=01:23:45:67:89:AB
profile=default routes="" limit-uptime=1h limit-bytes-in=0
limit-bytes-out=0 uptime=0s bytes-in=0 bytes-out=0 packets-in=0
packets-out=0
[admin@MikroTik] ip hotspot user>

HotSpot Active Users

Home menu level: /ip hotspot active
Description

The active user list shows the list of currently logged in users. Nothing can be changed here, except user can be logged out with the **remove** command.

Property Description

- **address** *(read-only: IP address)* - IP address of the user
- **bytes-in** *(read-only: integer)* - how many bytes did the router receive from the client
- **bytes-out** *(read-only: integer)* - how many bytes did the router send to the client
- **domain** *(read-only: text)* - domain of the user (if split from username)
- **idle-timeout** *(read-only: time)* - how much idle time it is left for the user until he/she will be automatically logged out
- **keepalive-lost** *(read-only: time)* - how much time past since last packed from the client has been received
- **packets-in** *(read-only: integer)* - how many packets did the router receive from the client
- **packets-out** *(read-only: integer)* - how many packets did the router send to the client
- **session-timeout** *(read-only: time)* - how much time is left for the user until he/she will be automatically logged out
- **uptime** *(read-only: time)* - current session time (logged in time) of the user
- **user** *(read-only: name)* - name of the user

Example

To get the list of active users:

```
[admin@MikroTik] ip hotspot active> print
Flags: R - radius, H - DHCP
# USER ADDRESS UPTIME SESSION-TIMEOUT IDLE-TIMEOUT
 0 Ex 10.0.0.144 4m17s 55m43s
```

HotSpot Remote AAA

Home menu level: /ip hotspot aaa

Property Description

- **accounting** *(yes | no ; default: yes)* - whether RADIUS accounting should be used (have no effect if RADIUS is not used)
- **interim-update** *(time ; default: 0s)* - Interim-Update time interval
 - **0s** - do not send accounting updates
- **use-radius** *(yes | no ; default: no)* - whether user database in a RADIUS server should be consulted
Notes

RADIUS user database is consulted only if the required username is not found in local user database

The value set in interim-update is overridden by the value sent by a RADIUS server (if any)

Example

To enable RADIUS AAA:

```
[admin@MikroTik] ip hotspot aaa> set use-radius=yes
[admin@MikroTik] ip hotspot aaa> print
use-radius: yes
accounting: yes
interim-update: 0s
[admin@MikroTik] ip hotspot aaa>
```

HotSpot Server Settings

Home menu level: /ip hotspot server

Description

HotSpot Server configuration is used to modify DHCP leases for logged-in users in order them to get non-temporary addresses. When a user has successfully authenticated, the HotSpot Server communicates with the DHCP server to change the lease information the user will receive next time he/she will request the DHCP lease (that is why the lease of temporary address should be as short as possible). The new lease should not be for a long time either for users to be able to switch fast on one machine as well as to reuse the IP addresses of this pool (users are logged out just as they click the log out button, but their addresses stay allocated to the machines they have been using, making it impossible for another users to log in from these machines)

Property Description

- **address-pool** (name) - IP pool name, from which a HotSpot client will get an IP address if it is not given a static IP address
- **dhcp-server** (name) - DHCP server with which to use this profile
- **lease-time** (time ; default: 1m) - DHCP lease time for logged in user
- **login-delay** (time ; default: 10s) - Time required to log user in. The after-login page is displayed for this time. This time should be approximately the same as the lease-time for the temporary address lease
- **name** (name) - server profile name

Notes

This configuration is ignored by enabled-address method.

There can be added one HotSpot Server for each DHCP server. Which server profile to apply will
depend on DHCP server which gave DHCP lease to that client. Actually it means that if user will log in from different interfaces, then different server profiles will be used. It allows assigning different IP addresses on different Ethernet interfaces.

Network mask, gateway and some other setting are set up in /ip dhcp network submenu

Example

To add a HotSpot server named dhcp1 to the DHCP server hotspot-dhcp giving IP addresses from the hotspot address pool:

```
[admin@MikroTik] ip hotspot server> add name=dhcp1 dhcp-server=hotspot-dhcp \
   address-pool=hotspot
[admin@MikroTik] ip hotspot server> print
  # NAME DHCP-SERVER ADDRESS-POOL LOGIN-DELAY LEASE-TIME
  0 dhcp1 hotspot-dhcp hotspot 10s 1m
```

HotSpot Cookies

Home menu level: /ip hotspot cookie

Description

Cookies can be used for authentication in the Hotspot service

Property Description

- **domain** (read-only: text) - domain name (if split from username)
- **expires-in** (read-only: time) - how long the cookie is valid
- **mac-address** (read-only: MAC address) - user's MAC address
- **user** (read-only: name) - username

Notes

There can be multiple cookies with the same MAC address. For example, there will be a separate cookie for each web browser on the same computer.

Cookies can expire - that's how it is supposed to be. Default validity time for cookies is 1 day (24 hours), but it can be changed:

```
/ip hotspot set http-cookie-lifetime=3d
```

Example

To get the list of valid cookies:

```
[admin@MikroTik] ip hotspot cookie> print
  # USER DOMAIN MAC-ADDRESS EXPIRES-IN
  0 Ex 01:23:45:67:89:AB 23h54m16s
```
Walled Garden

Home menu level: `/ip hotspot walled-garden`

Description

Walled garden is a system which allows unauthorized use of some resources, but requires authorization to access other resources. This is useful, for example, to give access to some general information about HotSpot service provider or billing options.

Property Description

- **action** (allow | deny; default: allow) - action to undertake if a packet matches the rule:
 - allow - allow the access to the page without prior authorization
 - deny - the authorization is required to access this page
- **dst-host** (text; default: "") - domain name of the destination web server (this is regular expression)
- **dst-port** (integer; default: ") - the TCP port a client has send the request to
- **path** (text; default: "") - the path of the request (this is regular expression)

Notes

Currently you can not place HTTPS servers inside the Walled Garden. However, there is a workaround on this. You can add a mangle rule that allows you to pass traffic to an IP address of secure web server, *exempli gratia*:

```
/ip firewall mangle add dst-address=159.148.108.1/32 mark-flow=hs-auth
```

Example

To allow unauthorized requests to the **www.example.com** domain’s `/paynow.html` page:

```
[admin@MikroTik] ip hotspot walled-garden> add path="^/paynow\.html$" \ "^www\.example\\.com$"
[admin@MikroTik] ip hotspot walled-garden> print
Flags: X disabled

<table>
<thead>
<tr>
<th>DST-HOST</th>
<th>DST-PORT PATH</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>^www.example.com$</td>
<td>/paynow.html$</td>
<td>allow</td>
</tr>
</tbody>
</table>
```

Notes:

- \ symbol sequence is used to enter \ character
- . pattern means . only (in regular expressions single dot in pattern means any symbol)
- to show that no symbols are allowed before the given pattern, we use ^ symbol at the beginning of the pattern
• to specify that no symbols are allowed after the given pattern, we use $ symbol at the end of the pattern

Customizing HotSpot Servlet

Description

Servlet Pages

The HotSpot servlet recognizes 5 different request types:

1. request for a remote host
 - if user is logged in, the requested page is served
 - if user is not logged in, but the destination host is allowed by walled garden, then the request is also served
 - if user is not logged in, and the destination host is disallowed by walled garden, `rlogin.html` is displayed; if `rlogin.html` is not found, `redirect.html` is used to redirect to the login page

2. request for '/' on the HotSpot host
 - if user is logged in, `rstatus.html` is displayed; if `rstatus.html` is not found, `redirect.html` is used to redirect to the status page
 - if user is not logged in, `rlogin.html` is displayed; if `rlogin.html` is not found, `redirect.html` is used to redirect to the login page

3. request for '/login' page
 - if user has successfully logged in (or is already logged in), `alogin.html` is displayed; if `alogin.html` is not found, `redirect.html` is used to redirect to the originally requested page or the status page (in case, original destination page was not given)
 - if user is not logged in (username was not supplied, no error message appeared), `login.html` is showed
 - if login procedure has failed (error message is supplied), `flogin.html` is displayed; if `flogin.html` is not found, `login.html` is used
 - in case of fatal errors, `error.html` is showed

4. request for '/status' page
 - if user is logged in, `status.html` is displayed
 - if user is not logged in, `fstatus.html` is displayed; if `fstatus.html` is not found, `redirect.html` is used to redirect to the login page

5. request for '/logout' page
 - if user is logged in, `logout.html` is displayed
 - if user is not logged in, `flogout.html` is displayed; if `flogout.html` is not found,
redirect.html is used to redirect to the login page

Note that if it is not possible to meet a request using the pages stored on the router's FTP server, the default pages are used.

There are many possibilities to customize what the HotSpot authentication pages look like:

- The pages are easily modifiable. They are stored on the router's FTP server in hotspot directory.
- By changing the variables, which client sends to the HotSpot servlet, it is possible to reduce keyword count to one (username or password; for example, the client's MAC address may be used as the other value) or even to zero (License Agreement; some predefined values general for all users or client's MAC address may be used as username and password)
- Registration may occur on a different server (for example, on a server that is able to charge Credit Cards). Client's MAC address may be passed to it, so that this information need not be written in manually. After the registration, the server may change RADIUS database enabling client to log in for some amount of time.

To insert variable in some place in HTML file, variable name surrounded by % symbols is used. This construction may be used in any HotSpot HTML file accessed as '/', '/login', '/status' or '/logout'. For example, to show a link to the login page, following construction can be used:

login

Variables

All of the Servlet HTML pages use variables to show user specific values. Variable names appear only in the source - they are automatically replaced with the respective values by the HotSpot Servlet. For each variable there is an example included in brackets.

- Common variables (available in all pages):
 - hostname - DNS name or IP address (if DNS name is not given) of the HotSpot Servlet ("hotspot.example.net")
 - identity - RouterOS identity name ("MikroTik")
 - ip - IP address of the client ("10.5.50.2")
 - link-logout - link to logout page ("http://10.5.50.1/logout")
 - link-login - link to login page including original URL requested ("http://10.5.50.1/login?dst=http://www.example.com/")
 - link-status - link to status page ("http://10.5.50.1/status")
 - link-orig - original URL requested ("http://www.example.com/")
 - session-id - value of 'session-id' parameter in the last request
 - var - value of 'var' parameter in the last request

- redirect.html, rlogin.html, rstatus.html, fstatus.html, flogout.html:
 - link-redirect - page to which redirect has to be done (for example, "http://www.example.com/")

- login.html, flogin.html:
- **mac** - MAC address ("01:23:45:67:89:AB"; if unknown, then contains "---")
- **error** - error message, if previous login failed ("invalid username or password")
- **input-user** - name and value of username input field ("name=user value=john")
- **input-password** - name of password input field ("name=password")
- **input-popup** - name and value of pop-up input field ("name=popup checked")
- **form-input** - name of input form and login JavaScript for password encoding ("name=login onSubmit=...")
- **main** - MD5 encryption JavaScript and form for encrypted password
- **user** - value of username input field ("john")
- **domain** - value of domain ("example")
- **popup** - whether to pop-up checkbox ("true" or "false")
- **chap-id** - value of chap ID ("\371")
- **chap-challenge** - value of chap challenge ("\330\013\021\234\145\245\303\253\142\246\133\175\375\316")

aLogin.html:
- **link-redirect** - page to which redirect has to be done ("http://www.example.com/")
- **login-time** - time in seconds after which redirect has to be done ("9")
- **popup** - if aLogin.html should pop-up status page in new window ("true" or "false")

logout.html:
- **username** - name ("john")
- **ip** - IP address ("192.168.0.222")
- **mac** - MAC address ("01:23:45:67:89:AB")
- **uptime** - session uptime ("10h2m33s")
- **session-timeout** - session timeout left for the user ("5h" or "---" if none)
- **session-valid-till** - date and time when session will expire ("Sep/21/2003 16:12:33" or "---" if there is no session-timeout)
- **idle-timeout** - idle timeout ("20m" or "---" if none)
- **bytes-in** - number of bytes received from the user ("15423")
- **bytes-out** - number of bytes sent to the user ("11352")
- **packets-in** - number of packets received from the user ("251")
- **packets-out** - number of packets sent to the user ("211")
- **uptime-secs** - uptime in seconds ("125")
- **session-timeout-secs** - session timeout in seconds ("3475" or "" if there is such timeout)
- **idle-timeout-secs** - idle timeout in seconds ("88" or "" if there is such timeout)
- **limit-bytes-in** - byte limit for send ("1000000" or "---" if there is no limit)
- **limit-bytes-out** - byte limit for receive ("1000000" or "---" if there is no limit)
- **remain-bytes-in** - remaining bytes until limit-bytes-in will be reached ("337465" or "---" if there is no limit)
- **remain-bytes-out** - remaining bytes until limit-bytes-out will be reached ("124455" or "---" if
• status.html:
 • **username** - name ("john")
 • **ip** - IP address ("192.168.0.222")
 • **mac** - MAC address ("01:23:45:67:89:AB")
 • **uptime** - session uptime ("10h2m33s")
 • **session-timeout** - session timeout left for the user ("5h" or "---" if none)
 • **session-valid-till** - date and time when session will expire ("Sep/21/2003 16:12:33" or "---" if there is no session-timeout)
 • **idle-timeout** - idle timeout ("20m" or "---" if none)
 • **bytes-in** - number of bytes received from the user ("15423")
 • **bytes-out** - number of bytes sent to the user ("11352")
 • **packets-in** - number of packets received from the user ("251")
 • **packets-out** - number of packets sent to the user ("211")
 • **refresh-time** - time in seconds after which to automatically refresh status page ("90s")
 • **refresh-time-str** - more friendly representation of refresh-time ("1m30s")
 • **uptime-secs** - uptime in seconds ("125")
 • **session-timeout-secs** - session timeout in seconds ("3475" or "" if there is such timeout)
 • **idle-timeout-secs** - idle timeout in seconds ("88" or "" if there is such timeout)
 • **limit-bytes-in** - byte limit for send ("1000000" or "---" if there is no limit)
 • **limit-bytes-out** - byte limit for receive ("1000000" or "---" if there is no limit)
 • **remain-bytes-in** - remaining bytes until limit-bytes-in will be reached ("337465" or "---" if there is no limit)
 • **remain-bytes-out** - remaining bytes until limit-bytes-out will be reached ("124455" or "---" if there is no limit)

• error.html:
 • **error** - error message ("DHCP lease not found")

Notes

To insert % symbol as a text (not as a part of variable construction), "%%" has to be used (if there is only one % symbol on a page or string between it and next % symbol is not a valid variable name, % may be used with the same result).

In most cases it is required login page to use **main** variable. And it is strongly suggested to place it BEFORE **form-input** input form. Otherwise situation can happen, that user already has entered his username/password, but MD5 encryption JavaScript is not yet loaded. It may result in password being sent over network in plain text. And of course, that login will fail in this case, too (if **allow-unencrypted-password** property is not set to yes).

The resulting password to be sent to the HotSpot gateway is formed MD5-hashing the concatenation of the following: chap-id, the password of the user and chap-challenge (in the given
The gateway uses CHAP authentication in case client's browser is hashing his/her password (in other words, if the main variable has been initialized successfully before the form is being submitted). In case plain-text password has been sent, PAP authentication algorithm is used. So if you want to force PAP-only authentication, you must remove the main variable from the servlet (of course, you must also allow the gateway to accept unencrypted passwords, or otherwise no one would be able to login at all).

In case if variables are to be used in link directly, then they must be escaped accordingly. For example, in login page??link will not work as intended, if username will be "123&456=1 2". In this case instead of %user%, its escaped version must be used: %user-esc%. link. Now the same username will be converted to "123%26456%3D1+2", which is the valid representation of "123&456=1 2" in URL. This trick may be used with any variables, not only with %user%.

Example

With basic HTML language knowledge and the examples below it should be easy to implement the ideas described above.

- To provide predefined value as username, in login.html change:

  ```html
  <input type="text" %input-user%>
  ```

 to this line:

  ```html
  <input type="hidden" name="user" value="hsuser">
  ```

 (where hsuser is the username you are providing)

- To provide predefined value as password, in login.html change:

  ```html
  <input type="password" %input-password%>
  ```

 to this line:

  ```html
  <input type="hidden" name="password" value="hspass">
  ```

 (where hspass is the password you are providing)

- To send client's MAC address to a registration server in form of:

  ```html
  ```

 change the Login button link in login.html to:

  ```html
  https://www.server.server/register.html?mac=%mac%
  ```

 (you should correct the link to point to your server)

- To show a banner after user login, in alogin.html after

  ```javascript
  if ('%popup%' == 'true') newWindow();
  ```

 add the following line:

  ```javascript
  open('http://your.web.server/your-banner-page.html', 'my-banner-name', '');
  ```

 (you should correct the link to point to the page you want to show)

- To choose different page shown after login, in login.html change (note that this meths will
work only for PAP and HTTPS authentication, the next example is more versatile):

```
<input type="hidden" name="dst" value="%link-orig%">
```
to this line:
```
<input type="hidden" name="dst" value="http://your.web.server">
```
(you should correct the link to point to your server)

• Alternatively to the previous example, to choose different page shown after login, in
 alogin.html replace:
```
location.href = '%link-redirect%';
```
with this line:
```
location.href = 'http://your.web.server';
```
and replace this line:
```
<td align="center" valign="bottom" height="50px">If still nothing happens, press <a href="%link-redirect%">here</a></td>
```
with this:
```
<td align="center" valign="bottom" height="50px">If still nothing happens, press <a href="http://your.web.server">here</a></td>
```

An another example is making HotSpot to authenticate on a remote server (which may, for example, perform creditcard charging):

• Allow direct access to the external server in dst-nat and hotspot-temp firewall chain or,
 alternatively, either in mangle, or in walled-garden. Note: walled-garden is not compatible
 with HTTPS.

• Modify login page of the HotSpot servlet to redirect to the external authentication server. The
 external server should modify RADIUS database as needed
Here is an example of such a login page to put on the HotSpot router (it is redirecting to
https://auth.example.com/login.php, replace with the actual address of an external
authentication server):
```
<html> <title>...</title> <body> 
<form name="redirect" 
action="https://auth.example.com/login.php" method="post"> 
<input type="hidden" 
name="mac" value="%mac%"> 
<input type="hidden" name="ip" value="%ip%"> 
<input type="hidden" name="user" value="%user%"> 
<input type="hidden" name="link-login" value="%link-login%"> 
<input type="hidden" name="link-orig" value="%link-orig%"> 
<input type="hidden" name="error" value="%error%"> </form> 
<script language="JavaScript"> <!-- document.redirect.submit(); //--> </script> 
</body>
</html>
```

• The external server can log in a HotSpot client by redirecting it back to the original HotSpot
 servlet login page, specifying the correct username and password
Here is an example of such a page (it is redirecting to https://hotspot.example.com/login,
replace with the actual address of a HotSpot router; also, it is displaying www.mikrotik.com
after successful login, replace with what needed):
```
<html> <title>Hotspot login page</title> <body> 
<form name="login" 
action="https://hotspot.example.com/login" method="post"> 
<input type="text" 
name="user" value="demo"> 
<input type="password" name="password" value="none"> 
<input type="hidden" name="domain" value=""> 
<input type="hidden" name="dst" value="http://www.mikrotik.com"> </form> 
</body> </html>
```
• Hotspot will ask RADIUS server whether to allow the login or not. If not allowed, alogin.html page will be displayed (it can be modified to do anything!). If not allowed, flogin.html (or login.html) page will be displayed, which will redirect client back to the external authentication server.

• Note: as shown in these examples, HTTPS protocol and POST method can be used to secure communications.

Possible Error Messages

Description

There are two kinds of errors: fatal non-fatal. Fatal errors are shown on a separate HTML page called error.html. Non-fatal errors are basically indicating incorrect user actions and are shown on the login form.

General non-fatal errors:

• **You are not logged in** - trying to access the status page or log off while not logged in. Solution: log in

• **IP <your_ip_address> is already logged in** - trying to log in while somebody from this IP address has already been logged in. Solution: you should not log in twice

• **no chap** - trying to log in using MD5 hash, but HotSpot server does not know the challenge used for the hash (this is may happen if you use BACK buttons in browser). Solution: instruct browsers to reload (refresh) the login page

• **invalid username: this MAC address is not yours** - trying to log in using a MAC address username different from the actual user’s MAC address. Solution: no - users with usernames that look like a MAC address may only log in from the MAC address specified as their user name

• **current license allows only <num> sessions** - Solution: try to log in later when there will be less concurrent user sessions, or buy an another license that allows more simultaneous sessions

• **hotspot service is shutting down** - RouterOS is currently being restarted or shut down. Solution: wait until the service will be available again

General fatal errors:

• **unknown MAC address for <your_ip_address>** - trying to log in from a remote MAC network (i.e. there is a router between the client and the HotSpot gateway). Cause: if auth-requires-mac parameter is enabled, users can only log in from the same MAC network the HotSpot router belongs to. Solution: disable the auth-requires-mac parameter

• **can't get IP: no IP pool** - DHCP-pool login method is chosen for this user, but no IP pool is specified. Solution: make sure that an IP pool is specified in /ip hotspot server submenu

• **no address from ip pool** - unable to get an IP address from an IP pool. Solution: make sure there is a sufficient amount of free IP addresses in IP pool

• **IP <your_ip_address> from pool is already logged in** - somebody is already logged in using the address should be given by DHCP server (in DHCP-pool login method) to the current user. Solution: do not specify static IP addresses from the range that belongs to an IP pool that HotSpot is using to dynamically give out IP addresses
• **unable to determine IP address of the client** - The client's IP address is the same the HotSpot router has. Cause: this happen if a user is using a local SOCKS proxy server to access the HotSpot gateway. Solution: do not use local SOCKS proxy to access the HotSpot page. You may use a local HTTP proxy server without any troubles

• **invalid license** - report this error to MikroTik

• **unencrypted passwords are not accepted** - received an unencrypted password. Solution: either use a browser that supports JavaScript (all modern browsers) or set allow-unencrypted-passwords parameter to yes

Local HotSpot user database non-fatal errors:

• **invalid username or password** - self-explanatory

• **invalid mac address** - trying to log in from a MAC address different from specified in user database. Solution: log in from the correct MAC address or take out the limitation

• **your uptime limit is reached** - self-explanatory

• **your traffic limit is reached** - either limit-bytes-in or limit-bytes-out limit is reached

• **no more sessions are allowed for user** - the shared-users limit for the user's profile is reached. Solution: wait until someone with this username logs out, use different login name or extend the shared-users limit

RADIUS client non-fatal errors:

• **invalid username or password** - RADIUS server has rejected the username and password sent to it without specifying a reason. Cause: either wrong username and/or password, or other error. Solution: should be clarified in RADIUS server's log files

• `<error_message_sent_by_radius_server>` - this may be any message (any text string) sent back by RADIUS server. Consult with your RADIUS server's documentation for further information

RADIUS client fatal errors:

• **RADIUS server is not responding** - self-explanatory. Solution: check whether the RADIUS server is running and is reachable from the HotSpot router

• **invalid response from RADIUS server** - the RADIUS server has sent incorrect response (neither accept nor reject). Solution: make sure the RADIUS server sends only accept or reject responses to authentication requests

HotSpot Step-by-Step User Guide for dhcp-pool Method

Description

Let us consider following example HotSpot setup:

There will be 2 HotSpot IP address ranges used for clients on **prism1** interface. You are free to choose the address ranges, just make sure you use masquerading for not routed ones. In this example, we are using:

- temporary addresses which must be masqueraded:
 - network: 192.168.0.0/24

Copyright 1999-2005, MikroTik. All rights reserved. Mikrotik, RouterOS and RouterBOARD are trademarks of Mikrotikis SIA. Other trademarks and registered trademarks mentioned herein are properties of their respective owners.
• gateway: 192.168.0.1
• pool: 192.168.0.2-192.168.0.254

• real addresses which require routing:
 • network: 10.5.50.0/24
 • gateway: 10.5.50.1
 • pool: 10.5.50.2-10.5.50.254

For HotSpot client accounting, HotSpot will add dynamic firewall rules in firewall HotSpot chain. This chain has to be created manually. And all network packets (to/from HotSpot clients) have to pass this chain.

Example

1. The ether1 interface is configured with IP address 10.5.6.5/24 and the default route pointing to the 10.5.6.1 gateway.
2. The prism1 interface is configured for AP mode and is able register IEEE 802.11b wireless clients. See the Prism Interface Manual for more details.
3. ARP should be set to reply-only mode on the prism1 interface, so no dynamic entries are added to the ARP table. DHCP server will add entries only for clients which have obtained DHCP leases:

 /interface prism set prism1 arp=reply-only

4. Add two IP addresses to the prism1 interface:

 /ip address add address=192.168.0.1/24 interface=prism1 \ comment="hotspot temporary network"
 /ip address add address=10.5.50.1/24 interface=prism1 \ comment="hotspot real network"

5. add 2 IP address pools:

 /ip pool add name=hs-pool-temp ranges=192.168.0.2-192.168.0.254
 /ip pool add name=hs-pool-real ranges=10.5.50.2-10.5.50.254

6. add masquerading rule for temporary IP pool, which is not routed:

 /ip firewall src-nat add src-address=192.168.0.0/24 action=masquerade \ comment="masquerade hotspot temporary network"

 Make sure you have routing for authenticated address space. Try to ping 10.5.50.1 from your Internet gateway 10.5.6.1, for example. See the Basic Setup Guide on how to set up routing.
7. Add dhcp server (for temporary IP addresses):

 /ip dhcp-server add name="hs-dhcp-server" interface=prism1 lease-time=14s \ address-pool=hs-pool-temp add-arp=yes disabled=no
8. Add hotspot server setup (for real IP addresses):

```
ip hotspot server add name=hs-server dhcp-server=hs-dhcp-server \
    address-pool=hs-pool-real 
ip dhcp-server network add address=10.5.50.0/24 gateway=10.5.50.1 \
    dns-server=159.148.60.2,159.148.108.1 domain="example.com"
```

9. Add local hotspot user:

```
ip hotspot user add name=Ex password=Ex
```

10. Setup hotspot service to run on port 80 (www service has to be assigned another port, e.g., 8081):

```
ip service set www port=8081 
ip service set hotspot port=80
```

Note! Changing www service to other port than 80 requires that you specify the new port when connecting to MikroTik router using WinBox, e.g., use 10.5.50.1:8081 in this case.

11. Redirect all TCP requests from temporary IP addresses to hotspot service:

```
ip firewall dst-nat add src-address=192.168.0.0/24 dst-port=443 protocol=tcp \
    action=redirect to-dst-port=443 \n    comment="redirect unauthorized hotspot clients to hotspot service" 
ip firewall dst-nat add src-address=192.168.0.0/24 protocol=tcp \
    action=redirect to-dst-port=80 \n    comment="redirect unauthorized hotspot clients to hotspot service"
```

12. Allow DNS requests and ICMP ping from temporary addresses and reject everything else:

```
ip firewall add name=hotspot-temp comment="limit unauthorized hotspot clients" 
ip firewall rule forward add src-address=192.168.0.0/24 action=jump \n    jump-target=hotspot-temp comment="limit access for unauthorized hotspot clients"  
ip firewall rule input add src-address=192.168.0.0/24 dst-port=80 \n    protocol=tcp action=accept comment="accept requests for local DHCP server" 
ip firewall rule input add src-address=192.168.0.0/24 dst-port=443 \n    protocol=tcp action=accept comment="accept request for hotspot servlet" 
ip firewall rule input add src-address=192.168.0.0/24 dst-port=67 \n    protocol=udp action=accept comment="accept requests for local DHCP server" 
ip firewall rule input add src-address=192.168.0.0/24 action=jump \n    jump-target=hotspot-temp comment="limit access for unauthorized hotspot clients" 
ip firewall rule hotspot-temp add protocol=icmp action=return \n    comment="allow ping requests" 
ip firewall rule hotspot-temp add protocol=udp dst-port=53 action=return \n    comment="allow dns requests" 
ip firewall rule hotspot-temp add action=reject \n    comment="reject access for unauthorized hotspot clients"
```

13. Add hotspot chain:

```
ip firewall add name=hotspot comment="account authorized hotspot clients"
```
14. Pass all through-going traffic to the hotspot chain:

```
/ip firewall rule forward add action=jump jump-target=hotspot \
comment="account traffic for authorized hotspot clients"
```

Note that in order to use SSL authentication, you should install an SSL certificate. This topic is not covered by this manual section. Please see the respective manual section on how to install certificates in MikroTik RouterOS

HotSpot Step-by-Step User Guide for enabled-address Method

Description

Let us consider following example HotSpot setup:

There are clients at **prism1** interface, which are able to use Internet already. You want all these clients to authenticate before they are able to use Internet.

For hotspot client accounting, hotspot will add dynamic firewall rules in firewall hotspot chain. This chain has to be created manually. And all network packets (to/from hotspot clients) have to pass this chain.

Example

1. Setup hotspot service to run on port 80 (www service has to be assigned another port, e.g., 8081):

   ```
   /ip service set www port=8081
   /ip service set hotspot port=80
   
   **Note!** Changing www service to other port than 80 requires that you specify the new port when connecting to MikroTik router using WinBox, e.g., use 10.5.50.1:8081 in this case.
   
   2. Setup hotspot profile to mark authenticated users with flow name "hs-auth":

   ```
 /ip hotspot profile set default mark-flow="hs-auth" login-method=enabled-address
   ```

3. Add local hotspot user:

   ```
 /ip hotspot user add name=Ex password=Ex
   ```

4. Redirect all TCP requests from unauthorized clients to the hotspot service:

   ```
 /ip firewall dst-nat add in-interface="prism1" flow="!hs-auth" protocol=tcp \
 dst-port=443 action=redirect to-dst-port=443 \
 comment="redirect unauthorized hotspot clients to hotspot service"
   ```

   ```
 /ip firewall dst-nat add in-interface="prism1" flow="!hs-auth" protocol=tcp \
 action=redirect to-dst-port=80 \
 comment="redirect unauthorized clients to hotspot service"
   ```
5. Allow DNS requests and ICMP ping from temporary addresses and reject everything else:

```
/ip firewall add name=hotspot-temp comment="limit unauthorized hotspot clients"
/ip firewall rule forward add in-interface=prism1 action=jump \
 jump-target=hotspot-temp comment="limit access for unauthorized hotspot clients"
/ip firewall rule input add in-interface=prism1 dst-port=80 protocol=tcp \
 action=accept comment="accept requests for hotspot servlet"
/ip firewall rule input add in-interface=prism1 dst-port=443 protocol=tcp \
 action=accept comment="accept request for hotspot servlet"
/ip firewall rule input add in-interface=prism1 dst-port=67 protocol=udp \
 protocol=udp action=accept comment="accept requests for local DHCP server"
/ip firewall rule input add in-interface=prism1 action=jump \
 jump-target=hotspot-temp comment="limit access for unauthorized hotspot clients"
/ip firewall rule hotspot-temp add flow="hs-auth" action=return \
 comment="return if connection is authorized"
/ip firewall rule hotspot-temp add protocol=icmp action=return \
 comment="allow ping requests"
/ip firewall rule hotspot-temp add protocol=udp dst-port=53 action=return \
 comment="allow dns requests"
/ip firewall rule hotspot-temp add action=reject \
 comment="reject access for unauthorized clients"
```

6. Create a hotspot chain for authorized hotspot clients:

```
/ip firewall add name=hotspot comment="account authorized hotspot clients"
```

7. Pass all through-going traffic to the hotspot chain:

```
/ip firewall rule forward add action=jump jump-target=hotspot \
 comment="account traffic for authorized hotspot clients"
```

**Note** that in order to use SSL authentication, you should install an SSL certificate. This topic is not covered by this manual section. Please see the respective manual section on how to install certificates in MikroTik RouterOS.

As we see from example, only hotspot interface is used - we don't care what IP addresses are there. It is possible to add hotspot authentication for one more interface (prism2) by adding only 4 additional firewall rules:

- Setup dst-nat to redirect unauthorized clients to the hotspot service:

  ```
 /ip firewall dst-nat add in-interface="prism2" flow="!hs-auth" protocol=tcp \
 dst-port=443 action=redirect to-dst-port=443 \
 comment="redirect unauthorized prism2 clients to hotspot service"
 /ip firewall dst-nat add in-interface="prism2" flow="!hs-auth" protocol=tcp \
 action=redirect to-dst-port=80 \
 comment="redirect unauthorized prism2 clients to hotspot service"
  ```

- Limit access for unauthorized prism2 interface clients:

  ```
 /ip firewall rule forward add in-interface=prism2 action=jump \
 jump-target=hotspot-temp comment="limit access for unauthorized prism2 clients"
 /ip firewall rule input add in-interface=prism2 action=jump \
  ```
Optional Settings

- You may want to use same address space for both your LAN and HotSpot networks. Please consult the IP Address and ARP Manual for **proxy-arp** feature.

- You may want to translate the destination addresses of all TCP port 25 connections (SMTP) from HotSpot users to your local mail server for mail relaying. Thus, users can retain their mail client setup and use your mail server for outgoing mail without reconfiguring their mail clients. If **10.5.6.100** is your mail server accepting connections from network **10.5.50.0/24**, then the required destination NAT rule would be:

```
/ip firewall dst-nat add src-address=10.5.50.0/24 dst-port=25 protocol=tcp \
 to-dst-address=10.5.6.100 action=nat \
 comment="Translate SMTP TCP 25 port to our mail server"
```

- One more option is to allow access certain pages without authentication (walled garden). For example, if **http://hotspot.example.com** is your web server's name:

```
[admin@MikroTik] ip hotspot walled-garden> add \
 dst-host="^hotspot\.[^.]\.*\./\.*\$"
[admin@MikroTik] ip hotspot walled-garden> print
Flags: X - disabled
DST-HOST DST-PORT PATH ACTION
 0 ^hotspot\.example\.com$ allow
[admin@MikroTik] ip hotspot walled-garden>
```

- For HotSpot clients to use transparent web-proxy on the same router, following configuration can be used:
  1. make sure, **web-proxy** software package is installed and DNS client is configured
  2. it is assumed, that HotSpot is set up and successfully running on port 8088. Hotspot clients are connected to the interface named **prism1**
  3. set up HotSpot to use one of the router's local IP addresses (10.5.50.1):

```
/ip hotspot set hotspot-address=10.5.50.1
```

  4. set up web-proxy to run on the same IP address on the port 3128:

```
/ip web-proxy set enabled=yes src-address=10.5.50.1:3128 transparent-proxy=yes
```

  5. configure hotspot service to use this web proxy as its parent proxy:

```
/ip hotspot set parent-proxy=10.5.50.1:3128
```

  6. redirect all requests from hotspot interface to port 80 (except to 10.5.50.1), to the web-proxy:
/ip firewall dst-nat add in-interface=prism1 dst-address=!10.5.50.1/32 dst-port=80 protocol=tcp action=redirect to-dst-port=8088 comment="transparent proxy"

7. Now, everything should be working fine. Only traffic of the redirected requests to the web-proxy will not be accounted. It's because this traffic will not pass through the forward chain.
   to enable accounting for the HotSpot user traffic to/from transparent web-proxy, additional firewall rules should be added:

/ip firewall rule input add in-interface=prism1 dst-port=3128 protocol=tcp action=jump jump-target=hotspot comment="account traffic from hotspot client to local web-proxy"
/ip firewall rule output add src-port=3128 protocol=tcp out-interface=prism1 action=jump jump-target=hotspot comment="account traffic from local web-proxy to hotspot client"

• You may want to allow multiple logins using the same username/password. Set the argument value of shared-users to the number of simultaneous user sessions using the same username in HotSpot profile. For example, to allow 10 clients to use the same username simultaneously:

/ip hotspot profile set default shared-users=10

• If you want the router to resolve DNS requests, enable DNS cache, and redirect all the DNS requests to the router itself (159.148.60.2 is this example mean the external DNS server the router will work with):

/ip dns set primary-dns=159.148.60.2
/ip dns set allow-remote-requests=yes
/ip firewall dst-nat add protocol=udp dst-port=53 action=redirect comment="intercept all DNS requests"
General Information

Summary

IP pools are used to define range of IP addresses that is used for DHCP server and Point-to-Point servers

Specifications

Packages required: system
License required: level1
Home menu level: /ip pool
Standards and Technologies: none
Hardware usage: Not significant

Related Documents

- Package Management
- IP Addresses and ARP
- AAA
- DHCP Client and Server
- HotSpot Gateway
- Universal Client Interface

Description

IP pools simply group IP addresses for further usage. It is a single configuration point for all features that assign IP addresses to clients.
Notes
Whenever possible, the same ip address is given out to each client (OWNER/INFO pair).

Setup
Home menu level: /ip pool

Property Description

name (name) - the name of the pool
ranges (IP address) - IP address list of non-overlapping IP address ranges in form of: from1-to1,from2-to2,...,fromN-toN. For example, 10.0.0.1-10.0.0.27,10.0.0.32-10.0.0.47

Example
To define a pool named ip-pool with the 10.0.0.1-10.0.0.125 address range excluding gateway's address 10.0.0.1 and server's address 10.0.0.100, and the other pool dhcp-pool, with the 10.0.0.200-10.0.0.250 address range:

    [admin@MikroTik] ip pool> add name=ip-pool ranges=10.0.0.2-10.0.0.99,10.0.0.101-10.0.0.126
    [admin@MikroTik] ip pool> add name= dhcp-pool ranges=10.0.0.200-10.0.0.250
    [admin@MikroTik] ip pool> print

    # NAME          RANGES
    0 ip-pool       10.0.0.2-10.0.0.99
                   10.0.0.101-10.0.0.126
    1 dhcp-pool     10.0.0.200-10.0.0.250
    [admin@MikroTik] ip pool>
SOCKS Proxy Server

Document revision 1.2 (Tue Apr 06 10:53:51 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
Summary
Specifications
Related Documents
Description
Notes
Additional Documents
SOCKS Configuration
Description
Property Description
Example
Access List
Description
Property Description
Active Connections
Description
Property Description
Example
FTP service through SOCKS server

General Information

Summary
This manual discusses the SOCKS proxy server which is implemented in RouterOS. MikroTik RouterOS supports SOCKS version 4.

Specifications
Packages required: system
License required: level1
Home menu level: /ip socks
Standards and Technologies: SOCKS version 4
Hardware usage: Not significant

Related Documents

- Firewall Filters
- Web Proxy
- Network Address Translation
Description

SOCKS is a proxy server that allows TCP based application data to relay across the firewall, even if the firewall would block the packets. The SOCKS protocol is independent from application protocols, so it can be used for many services, e.g., WWW, FTP, TELNET, and others.

At first, an application client connects to the SOCKS proxy server, then the proxy server looks in its access list to see whether the client is permitted to access the remote application server or not, if it is permitted, the proxy server relays the packet to the application server and creates a connection between the application server and client.

Notes

Remember to configure your application client to use SOCKS version 4.

You should secure the SOCKS proxy using its access list and/or firewall to disallow access from outside. Failing to secure the proxy server may introduce security issues to your network, and may provide a way for spammers to send junk mail through the router.

Additional Documents

- Information about SOCKS

SOCKS Configuration

Description

In this section you will learn how to enable the SOCKS proxy server and do its configuration.

Property Description

enabled (yes | no; default: no) - whether to enable or no the SOCKS proxy
max-connections (integer: 1 ..500; default: 200) - maximum number of simultaneous connections
port (integer: 1 ..65535; default: 1080) - TCP port on which the SOCKS server listens for connections
connection-idle-timeout (time; default: 2m) - time after which idle connections are terminated

Example

To enable SOCKS:

```
[admin@MikroTik] ip socks> set enabled=yes
[admin@MikroTik] ip socks> print
enabled: yes
 port: 1080
 connection-idle-timeout: 2m
 max-connections: 200
[admin@MikroTik] ip socks>
```
Access List

Home menu level: `/ip socks access`

Description

In the SOCKS access list you can add rules which will control access to SOCKS server. This list is similar to firewall lists.

Property Description

- **action** ( `allow` | `deny`; default: `allow` ) - action to be performed for this rule
  - `allow` - allow packets, matching this rule to be forwarded for further processing
  - `deny` - deny access for packets, matching this rule
- **dst-address** ( `IP address` ) - destination (server's) address
- **dst-netmask** ( `IP address` ) - network mask for destination address
- **dst-port** ( `integer` ) - destination port
- **src-address** ( `IP address` ) - source (client's) address for a packet
- **src-netmask** ( `IP address` ) - network mask for source address
- **src-port** ( `integer` ) - source port

Active Connections

Home menu level: `/ip socks connections`

Description

The Active Connection list shows all established TCP connections, which are maintained through the SOCKS proxy server.

Property Description

- **src-address** ( `read-only: IP address` ) - source (application client) IP address
- **dst-address** ( `read-only: IP address` ) - destination (application server) IP address
- **TX** ( `read-only: integer` ) - bytes sent
- **RX** ( `read-only: integer` ) - bytes received

Example

To see current TCP connections:

```
[admin@MikroTik] ip socks connections> print
 # SRC-ADDRESS DST-ADDRESS TX RX
 0 192.168.0.2:3242 159.148.147.196:80 4847 2880
 1 192.168.0.2:3243 159.148.147.196:80 3408 2127
 2 192.168.0.2:3246 159.148.95.16:80 10172 25207
 3 192.168.0.2:3248 194.818.26:80 474 1629
 4 192.168.0.2:3249 159.148.95.16:80 6477 18695
```
FTP service through SOCKS server

Let us consider that we have a network 192.168.0.0/24 which is masqueraded, using a router with a public IP 10.1.0.104/24 and a private IP 192.168.0.1/24. Somewhere in the network is an FTP server with IP address 10.5.8.8. We want to allow access to this FTP server for a client in our local network with IP address 192.168.0.2/24.

We have already masqueraded our local network:

```
[admin@MikroTik] ip firewall src-nat> print
Flags: X - disabled, I - invalid, D - dynamic
0 src-address=192.168.0.0/24 action=masquerade
[admin@MikroTik] ip firewall src-nat>
```

And the access to public FTP servers is denied in firewall:

```
[admin@MikroTik] ip firewall rule forward> print
Flags: X - disabled, I - invalid, D - dynamic
0 src-address=192.168.0.0/24 dst-address=:21 action=drop
[admin@MikroTik] ip firewall rule forward>
```

We need to enable the SOCKS server:

```
[admin@MikroTik] ip socks> set enabled=yes
[admin@MikroTik] ip socks> print
 enabled: yes
 port: 1080
 connection-idle-timeout: 2m
 max-connections: 200
[admin@MikroTik] ip socks>
```

Add access to a client with an IP address 192.168.0.2/32 to SOCKS access list, allow data transfer from FTP server to client (allow destination ports from 1024 to 65535 for any IP address), and drop everything else:

```
[admin@MikroTik] ip socks access> add address=192.168.0.2/32 dst-port=21 action=allow
[admin@MikroTik] ip socks access> add dst-port=1024-65535 action=allow
[admin@MikroTik] ip socks access> add action=deny
[admin@MikroTik] ip socks access> print
Flags: X - disabled
 0 src-address=192.168.0.2/32 dst-address=:21 action=allow
 1 dst-address=:1024-65535 action=allow
 2 action=deny
[admin@MikroTik] ip socks access>
```

That's all - the SOCKS server is configured. To see active connections and data transmitted and received:

```
[admin@MikroTik] ip socks connections> print
 # SRC-ADDRESS DST-ADDRESS TX RX
```
Note! In order to use SOCKS proxy server, you have to specify its IP address and port in your FTP client. In this case IP address would be **192.168.0.1** (router's/SOCKS server's local IP) and port **1080**.
UPnP

Document revision 2.2 (Tue Mar 08 19:21:08 GMT 2005)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
  Summary
  Specifications
  Description
  Additional Documents
Enabling Universal Plug-n-Play
  Property Description
  Example
UPnP Interfaces
  Property Description
  Notes
  Example

General Information

Summary

The MikroTik RouterOS supports Universal Plug and Play architecture for transparent peer-to-peer
network connectivity of personal computers and network-enabled intelligent devices or appliances.
UPnP builds enables these devices to automatically connect with one another and work together to
make networking possible for more people.

Specifications

Packages required: system
License required: level1
Home menu level: /ip upnp
Standards and Technologies: TCP/IP, HTTP, XML, IGD
Hardware usage: Not significant

Description

UPnP enables data communication between any two devices under the command of any control
device on the network. Universal Plug and Play is completely independent of any particular
physical medium. It supports networking with automatic discovery without any initial
configuration, whereby a device can dynamically join a network. DHCP and DNS servers are
optional and will be used if available on the network. UPnP implements simple yet powerful NAT
traversal solution, that enables the client to get full peer-to-peer network support from behind the
NAT.

There are two interface types for UPnP: internal (the one local clients are connected to) and external
(the one the Internet is connected to). A router may only have one external interface with a 'public'
IP address on it, and as many internal IP addresses as needed, all with source-NATted 'internal' IP addresses.

The UPnP protocol is used for most of DirectX games as well as for various Windows Messenger features (remote assistance, application sharing, file transfer, voice, video) from behind a firewall.

**Additional Documents**

**Enabling Universal Plug-n-Play**

Home menu level: `/ip upnp`

**Property Description**

- **allow-disable-external-interface** (yes | no; default: yes) - whether or not should the users be allowed to disable router's external interface. This functionality (for users to be able to turn the router's external interface off without any authentication procedure) is required by the standard, but as it is sometimes not expected or unwanted in UPnP deployments which the standard was not designed for (it was designed mostly for home users to establish their local networks), you can disable this behavior
- **enabled** (yes | no; default: no) - whether UPnP feature is enabled
- **show-dummy-rule** (yes | no; default: yes) - this is to enable a workaround for some broken implementations, which are handling the absence of UPnP rules in incorrectly (for example, popping up error messages). This option will instruct the server to install a dummy (meaningless) UPnP rule that can be observed by the clients, which refuse to work correctly otherwise

**Example**

To enable UPnP feature:

```
[admin@MikroTik] ip upnp> set enable=yes
[admin@MikroTik] ip upnp> print
 enabled: yes
 allow-disable-external-interface: yes
 show-dummy-rule: yes
```

**UPnP Interfaces**

Home menu level: `/ip upnp interfaces`

**Property Description**

- **interface** (name) - interface name UPnP will be run on
- **type** (external | internal) - interface type, one of the:
  - external - the interface global IP address is assigned to
  - internal - router's local interface
Notes

It is highly recommended to upgrade DirectX runtime libraries to version DirectX 9.0a or higher and Windows Messenger to version Windows Messenger 5.0 or higher in order to get UPnP to work properly.

Example

We have masquerading already enabled on our router:

```
[admin@MikroTik] ip upnp interfaces> /ip firewall src-nat print
Flags: X - disabled, I - invalid, D - dynamic
 0 src-address=0.0.0.0/0:0-65535 dst-address=0.0.0.0/0:0-65535
 out-interface=ether1 protocol=all icmp-options=any:any flow=""
 connection="" content="" limit-count=0 limit-burst=0 limit-time=0s
 action=masquerade to-src-address=0.0.0.0 to-src-port=0-65535

[admin@MikroTik] ip upnp interfaces>
```

Now all we have to do is to add interfaces and enable UPnP:

```
[admin@MikroTik] ip upnp interfaces> add interface=ether1 type=external
[admin@MikroTik] ip upnp interfaces> add interface=ether2 type=internal
[admin@MikroTik] ip upnp interfaces> print
Flags: X - disabled
 # INTERFACE TYPE
 0 X ether1 external
 1 X ether2 internal

[admin@MikroTik] ip upnp interfaces> enable 0,1
[admin@MikroTik] ip upnp interfaces> .. set enabled=yes
[admin@MikroTik] ip upnp interfaces>
```
# Web Proxy


This document applies to MikroTik RouterOS V2.8

## Table of Contents

<table>
<thead>
<tr>
<th>Table of Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td></td>
</tr>
<tr>
<td>Specifications</td>
<td></td>
</tr>
<tr>
<td>Related Documents</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>Setup</td>
<td></td>
</tr>
<tr>
<td>Property Description</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td></td>
</tr>
<tr>
<td>Monitoring</td>
<td></td>
</tr>
<tr>
<td>Property Description</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td></td>
</tr>
<tr>
<td>Access List</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>Property Description</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td></td>
</tr>
<tr>
<td>Direct Access List</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>Property Description</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td></td>
</tr>
<tr>
<td>Managing the Cache</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>Property Description</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td></td>
</tr>
<tr>
<td>Rebuilding the Cache</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td></td>
</tr>
<tr>
<td>Transparent Mode</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td></td>
</tr>
<tr>
<td>HTTP Methods</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td></td>
</tr>
</tbody>
</table>

## General Information

### Summary

The MikroTik RouterOS implements the following proxy server features:
• Regular HTTP proxy
• Transparent proxy. Can be transparent and regular at the same time
• Access list by source, destination, URL and requested method
• Cache access list (specifies which objects to cache, and which not)
• Direct Access List (specifies which resources should be accessed directly, and which - through another proxy server)
• Logging facility

Specifications

Packages required: web-proxy
License required: level3
Home menu level: /ip web-proxy
Standards and Technologies: HTTP/1.0, HTTP/1.1, FTP
Hardware usage: uses disk space, if available (see description below)

Related Documents

• Package Management
• IP Addresses and ARP
• Firewall Filters
• Log Management

Description

When setting up Web proxy, make sure it serves only your clients, and is not misused as relay. Please read the security notice in the Access List Section!

Note that it may be useful to have Web proxy running even with no cache when you want to use it as something like HTTP and FTP firewall (for example, denying access to mp3 files) or to redirect requests to external proxy transparently

Setup

Home menu level: /ip web-proxy

Property Description

src-address ( IP address ; default: 0.0.0.0 ) - the web-proxy will use this address connecting to the parent proxy or web site.
  • 0.0.0.0 - appropriate src-address will be automatically taken from the routing table
enabled ( yes | no ; default: no ) - specifies whether the web proxy is enabled
hostname ( text ; default: "" ) - hostname (DNS or IP address) of the web proxy
transparent-proxy ( yes | no ; default: no ) - specifies whether the proxy uses transparent mode
parent-proxy ( IP address:port ; default: 0.0.0.0:0 ) - specifies upper-level (parent) proxy
max-object-size (integer; default: 4096) - objects larger than the size specified will not be saved on disk. The value is measured in kilobytes. If you wish to get a high bytes hit ratio, you should probably increase this (one 32 MB object hit counts for 3200 10KB hits). If you wish to increase speed more than your want to save bandwidth you should leave this low

max-cache-size (none | unlimited | integer; default: none) - specifies the maximal disk cache size, measured in megabytes

cache-administrator (text; default: webmaster) - administrator's e-mail displayed on proxy error page

cache-drive (system | text; default: system) - specifies the target disk drive to be used for storing cached objects

status (read-only: text; default: stopped) - display status information of the proxy server
  • stopped - proxy is disabled and is not running
  • rebuilding-cache - proxy is enabled and running, existing cache is being verified
  • running - proxy is enabled and running
  • stopping - proxy is shutting down (max 10s)
  • clearing-cache - proxy is stopped, cache files are being removed
  • creating-cache - proxy is stopped, cache directory structure is being created
  • dns-missing - proxy is enabled, but not running because of unknown DNS server (you should specify it under /ip dns)
  • invalid-address - proxy is enabled, but not running because of invalid address (you should change address or port)
  • invalid-cache-administrator - proxy is enabled, but not running because of invalid cache-administrator's e-mail address
  • invalid-hostname - proxy is enabled, but not running because of invalid hostname (you should set a valid hostname value)
  • error-logged - proxy is not running because of unknown error. This error is logged as System-Error. Please, send us this error and some description, how it happened
  • reserved-for-cache (integer) - maximal cache size, that is accessible to web-proxy

Notes

By default the proxy cache can use as much disk space as there is allocated for it. When the system allocates the space for the proxy cache, 1/7th of the total partition (disk) size is reserved for the system, but not less than 50MB. The rest is left for the proxy cache. The system RAM size is considered as well when allocating the cache size. The cache size is limited so, that there are at least 15MB of RAM per 1GB of cache plus 55MB of RAM is reserved for the system. max-cache-size is also taken in account, so the cache will not occupy more than it is specified in this property. The effective limit is calculated as a minimum of all three limits.

Considering the previous note, you should be aware that you will not be able to enable web proxy, if you have less than 60MB of RAM on your router

Expire time of cache entries can be different for each HTML page (specified in headers). But, if there is no such header, the entry will be considered fresh for not more than 72 hours.

The address argument has been removed so the proxy listens to all IP addresses that the router has
in its IP address list now.

**Example**

To enable the proxy on port 8080:

```plaintext
[admin@MikroTik] ip web-proxy> set enabled=yes src-address=0.0.0.0:8080
[admin@MikroTik] ip web-proxy> print
 enabled: no
 src-address: 0.0.0.0
 port: 8080
 hostname: proxy
 transparent-proxy: no
 parent-proxy: 0.0.0.0:0
 cache-administrator: webmaster
 max-object-size: 4096 kB
 cache-drive: system
 max-cache-size: 12
 status: rebuilding-cache
 reserved-for-cache: 9 MB
[admin@MikroTik] ip web-proxy>
```

**Monitoring**

Command name: `/ip web-proxy monitor`

**Property Description**

- **status** *(read-only: text)* - the same as for `/ip web-proxy print`
- **uptime** *(read-only: time)* - shows uptime of the proxy server
- **clients** *(read-only: integer)* - total number of proxy clients with different IP addresses during last uptime
- **requests** *(read-only: integer)* - total number of proxy requests during last uptime
- **hits** *(read-only: integer)* - total number of requests satisfied by proxy's cache during last uptime
- **cache-size** *(read-only: integer)* - current cache size in kilobytes
- **received-from-servers** *(read-only: integer)* - shows the amount in kilobytes the proxy received from remote servers during last uptime
- **sent-to-clients** *(read-only: integer)* - shows the amount in kilobytes the proxy sent to the clients to resolve their requests during last uptime
- **hints-sent-to-clients** *(read-only: integer)* - shows how much outgoing traffic was taken from the cache during last uptime

**Example**

```plaintext
[admin@MikroTik] > ip web-proxy monitor
 status: running
 uptime: 4d19h8m14s
 clients: 9
 requests: 10242
 hits: 3839
 cache-size: 328672 kB
 received-from-servers: 58108 kB
 sent-to-clients: 65454 kB
 hints-sent-to-clients: 7552 kB
[admin@MikroTik] >
```
Access List

Home menu level: /ip web-proxy access

Description

Access list is implemented in the same way as MikroTik firewall rules. Rules are processed from the top to the bottom. First matching rule specifies decision of what to do with this connection. Connections can be matched by its source address, destination address, destination port, substring of requested url or request method. If none of these parameters is specified, every connection will match this rule.

If connection is matched by a rule, action property of this rule specifies whether connection will be allowed or not. If connection does not match any rule, it will be allowed.

Property Description

src-address ( IP address/mask ; default: 0.0.0.0/0 ) - source address of the IP packet

dst-address ( IP address/mask ; default: 0.0.0.0/0 ) - destination address of the IP packet

dst-port ( text ; default: "" ) - a list of destination ports

url ( text ) - the URL of the request (regular expression)

method ( any | connect | delete | get | head | options | post | put | trace ; default: any ) - HTTP method used in the request (see HTTP Methods section in the end of this document)

action ( allow | deny ; default: allow ) - specifies the action to perform on matched packets

Notes

There is one rule by default, that disallows connect method connections to ports other than 443 (https) and 563 (snews). connect method is a security hole that allows connections (transparent tunneling) to any computer using any protocol. It is used mostly by spammers, as they found it very convinient to use others' mail (SMTP) servers as anonymous mail relay to send spam over the Internet.

It is strongly recommended to deny all IP addresses except those behind the router as the proxy still may be used to access your internal-use-only (intranet) web servers. Also, consult examples in Firewall Manual on how to protect your router.

Details about regular expressions used in url field can be found here: http://www.cs.utah.edu/dept/old/texinfo/regex/regex_toc.html

Example

The default rule:

[admin@MikroTik] ip web-proxy access> print
Flags: X - disabled
  0 ;;; allow CONNECT only to SSL ports 443 [https] and 563 [snews]
src-address=0.0.0.0/0 dst-address=0.0.0.0/0 dst-port=!443,563 url=""
method=connect action=deny

[admin@MikroTik] ip web-proxy access>
To disallow download of .MP3 files and FTP connections other than from the 10.0.0.1 server:

```
[admin@MikroTik] ip web-proxy access> add url="\.mp3$" action=deny
[admin@MikroTik] ip web-proxy access> add src-address=10.0.0.1/32 action=allow
[admin@MikroTik] ip web-proxy access> add url="ftp://" action=deny
[admin@MikroTik] ip web-proxy access> print
```

Flags: X - disabled

0 ;;; allow CONNECT only to SSL ports 443 [https] and 563 [snews]
src-address=0.0.0.0/0 dst-address=0.0.0.0/0 dst-port=443,563 url=""
method=connect action=deny

1 src-address=0.0.0.0/0 dst-address=0.0.0.0/0 dst-port="" url="\.mp3$"
method=any action=deny

2 src-address=10.0.0.1/32 dst-address=0.0.0.0/0 dst-port="" url=""
method=any action=allow

3 src-address=0.0.0.0/0 dst-address=0.0.0.0/0 dst-port="" url="ftp://"
method=any action=deny

[admin@MikroTik] ip web-proxy access>

Notes:

- \ symbol sequence is used to enter \ character
- \ pattern means . only (in regular expressions single dot in pattern means any symbol)
- to show that no symbols are allowed before the given pattern, we use ^ symbol at the beginning of the pattern
- to specify that no symbols are allowed after the given pattern, we use $ symbol at the end of the pattern

## Direct Access List

**Home menu level: /ip web-proxy direct**

**Description**

If parent-proxy property is specified, it is possible to tell proxy server whether to try to pass the request to the parent proxy or to resolve it connecting to the requested server directly. Direct Access List is managed just like Proxy Access List described in the previous chapter except the action argument.

**Property Description**

- **src-address** (IP address/mask; default: 0.0.0.0/0) - source address of the IP packet
- **dst-address** (IP address/mask; default: 0.0.0.0/0) - destination address of the IP packet
- **dst-port** (text; default: "") - a list of destination ports
- **url** (text) - the URL of the request (regular expression)
- **method** (any | connect | delete | get | head | options | post | put | trace; default: any) - HTTP method used in the request (see HTTP Methods section in the end of this document)
- **action** (allow | deny; default: allow) - specifies the action to perform on matched packets
  - **allow** - always resolve these requests directly, not through parent proxy
• **deny** - resolve these requests through parent proxy if there is one. If there in no parent proxy, the action will be the same as for allow.

**Notes**

The default action (if no rules specified or a request did not match any) is **deny**.

**Managing the Cache**

**Home menu level: /ip web-proxy cache**

**Description**

Cache access list specifies, which requests (domains, servers, pages) have to be cached locally by web proxy, and which not.

Access list is implemented exactly the same way as web proxy access list. Default action is to cache object (if no matching rule is found).

**Property Description**

- **src-address** (IP address/mask; default: **0.0.0.0/0**) - source address of the IP packet
- **dst-address** (IP address/mask; default: **0.0.0.0/0**) - destination address of the IP packet
- **dst-port** (text; default: "") - a list of destination ports
- **url** (text) - the URL of the request (regular expression)
- **method** (any | connect | delete | get | head | options | post | put | trace; default: **any**) - HTTP method used in the request (see HTTP Methods section in the end of this document)
- **action** (allow | deny; default: **allow**) - specifies the action to perform on matched packets

**Notes**

There is one cache access rule added by default:

```plaintext
[admin@MikroTik] ip web-proxy cache> print
Flags: X - disabled
0 src-address=0.0.0.0/0 dst-address=0.0.0.0/0 dst-port=""
 url="cgi-bin /?" method=any action=deny

[admin@MikroTik] ip web-proxy cache>
```

This rule defines that all runtime generated pages (which are located within **cgi-bin** directories or contain ? in url) have not to be cached.

Objects, which are larger than max-object-size, are not cached.

**Rebuilding the Cache**

**Command name: /ip web-proxy clear-cache**

**Description**

---

Page 396 of 521

Copyright 1999-2005, MikroTik. All rights reserved. Mikrotik, RouterOS and RouterBOARD are trademarks of Mikrotikls SIA. Other trademarks and registered trademarks mentioned herein are properties of their respective owners.
Web proxy will automatically detect any problems with cache and will try to solve them without losing any cache data. But in case of a heavy damage to the file system, the web proxy can't rebuild cache data. Cache can be deleted and new cache directories created using this feature.

Example

[admin@MikroTik] ip web-proxy> set enabled=no
[admin@MikroTik] ip web-proxy> clear-cache
Clear all web proxy cache, yes? [y/N]: y
cache will be cleared shortly
[admin@MikroTik] ip web-proxy>

Transparent Mode

Description

Transparent proxying does caching of web contents "transparently" to the end-user. *Id est* he (or she) does not know about the proxy being enabled and therefore does not need to provide any additional setting to his (her) web client.

To enable the transparent mode, firewall rule in destination NAT has to be added, specifying which connections (to which ports) should be transparently redirected to the proxy.

Notes

Only HTTP traffic is supported in web proxy transparent mode. HTTPS and FTP are not going to work this way.

Example

For example, if we want all connections coming from `ether1` interface to port 80 to be handled transparently by web proxy, and if our web proxy is listening on port 8080, then we should add the following destination NAT rule:

```
[admin@MikroTik] ip firewall dst-nat> add in-interface=ether1 protocol=tcp \
 dst-address=!10.0.0.1/32:80 action=redirect to-dst-port=8080
[admin@MikroTik] ip firewall dst-nat> print
Flags: X - disabled, I - invalid
 0 src-address=0.0.0.0/0:0-65535 in-interface=ether1
dst-address=!10.0.0.1/32:80 protocol=tcp icmp-options=any:any flow=""
src-mac-address=00:00:00:00:00:00 limit-count=0 limit-burst=0
 limit-time=0s action=redirect to-dst-address=0.0.0.0 to-dst-port=8080
[admin@MikroTik] ip firewall dst-nat>
```

Here, the router's address and port 80 (`10.0.0.1/32:80`) have been excluded from redirection to preserve the Winbox functionality which uses TCP port 80 on the router. More than one redirect rule can be added to redirect more than one port.

HTTP Methods

Description
OPTIONS

This method is a request of information about the communication options available on the chain between the client and the server identified by the Request-URI. The method allows the client to determine the options and (or) the requirements associated with a resource without initiating any resource retrieval.

GET

This method retrieves whatever information identified by the Request-URI. If the Request-URI refers to a data processing process than the response to the GET method should contain data produced by the process, not the source code of the process procedure(-s), unless the source is the result of the process.

The GET method can become a conditional GET if the request message includes an If-Modified-Since, If-Unmodified-Since, If-Match, If-None-Match, or If-Range header field. The conditional GET method is used to reduce the network traffic specifying that the transfer of the entity should occur only under circumstances described by conditional header field(-s).

The GET method can become a partial GET if the request message includes a Range header field. The partial GET method intends to reduce unnecessary network usage by requesting only parts of entities without transferring data already held by client.

The response to a GET request is cacheable if and only if it meets the requirements for HTTP caching.

HEAD

This method shares all features of GET method except that the server must not return a message-body in the response. This retrieves the metainformation of the entity implied by the request which leads to a wide usage of it for testing hypertext links for validity, accessibility, and recent modification.

The response to a HEAD request may be cacheable in the way that the information contained in the response may be used to update previously cached entity identified by that Request-URI.

POST

This method requests that the origin server accept the entity enclosed in the request as a new subordinate of the resource identified by the Request-URI.

The actual action performed by the POST method is determined by the origin server and usually is Request-URI dependent.

Responses to POST method are not cacheable, unless the response includes appropriate Cache-Control or Expires header fields.

PUT

This method requests that the enclosed entity be stored under the supplied Request-URI. If another
entity exists under specified Request-URI, the enclosed entity should be considered as updated (newer) version of that residing on the origin server. If the Request-URI is not pointing to an existing resource, the origin server should create a resource with that URI.

If the request passes through a cache and the Request-URI identifies one or more currently cached entities, those entries should be treated as stale. Responses to this method are not cacheable.

**TRACE**

This method invokes a remote, application-layer loop-back of the request message. The final recipient of the request should reflect the message received back to the client as the entity-body of a 200 (OK) response. The final recipient is either the origin server or the first proxy or gateway to receive a Max-Forwards value of 0 in the request. A TRACE request must not include an entity. Responses to this method MUST NOT be cached.
Certificate Management

Table of Contents

Table of Contents
  Summary
  Specifications
  Description
  Certificates
    Description
    Property Description
    Command Description
  Notes
  Example

General Information

Summary

SSL (Secure Socket Layer) is a security technology to ensure encrypted transactions over a public network. To protect the data, an encryption key should be negotiated. SSL protocol is using Certificates to negotiate a key for data encryption.

Specifications

Packages required: system
License required: level1
Home menu level: /certificate
Standards and Technologies: SSLv2, SSLv3, TLS
Hardware usage: high CPU usage

Description

SSL technology was first introduced by Netscape to ensure secure transactions between browsers and web servers. When a browser requests a secure web page (usually on TCP port 443), a web server first sends a Certificate, which contains a public key for the encryption key negotiation to take place. After the encryption key is negotiated, the web server will send the requested page encrypted using this key to the browser (and also the browser will be able to submit its data securely to the server).

SSL Certificate confirms the web server identity. The Certificate contains information about its holder (like DNS name and Country), issuer (the entity has signed the Certificate) and also the public key used to negotiate the encryption key. In order a Certificate to play its role, it should be signed by a third party (Certificate Authority) which both parties trust. Modern browsers that support SSL protocol have a list of the Certificate Authorities they trust (the most known and trusted CA is VeriSign, but that is not the only one).
To use a Certificate (which contain a public key), server needs a private key. One of the keys is used for encryption, and the other - for decryption. It is important to understand, that both keys can encrypt and decrypt, but what is encrypted by one of them can be decrypted only by the another. Private key must be kept securely, so that nobody else can get it and use this certificate. Usually private key is encrypted with a passphrase.

Most trusted Certificate Authorities sell the service of signing Certificates (Certificates also have a finite validity term, so you will have to pay regularly). It is also possible to create a self-signed Certificate (you can create one on most UNIX/Linux boxes using openssl toolkit; all Root Certificate Authorities have self-signed Certificates), but if it is not present in a browser's database, the browser will pop up a security warning, saying that the Certificate is not trusted (note also that most browsers support importing custom Certificates to their databases).

**Certificates**

Home menu level: `/certificate`

**Description**

MikroTik RouterOS can import Certificates for the SSL services it provides (only HotSpot for now). This submenu is used to manage Certificates for this services.

**Property Description**

- **name** (name) - reference name
- **subject** (read-only: text) - holder (subject) of the certificate
- **issuer** (read-only: text) - issuer of the certificate
- **serial-number** (read-only: text) - serial number of the certificate
- **invalid-before** (read-only: date) - date the certificate is valid from
- **invalid-after** (read-only: date) - date the certificate is valid until
- **ca** (yes | no; default: yes) - whether the certificate is used for building or verifying certificate chains (as Certificate Authority)

**Command Description**

- **import** - install new certificates
  - **file-name** - import only this file (all files are searched for certificates by default)
  - **passphrase** - passphrase for the found encrypted private key
  - **certificates-imported** - how many new certificates were successfully imported
  - **private-keys-imported** - how many private keys for existing certificates were successfully imported
  - **files-imported** - how many files contained at least one item that was successfully imported
  - **decryption-failures** - how many files could not be decrypted
  - **keys-with-no-certificate** - how many public keys were successfully decrypted, but did not have matching certificate already installed

- **reset-certificate-cache** - delete all cached decrypted public keys and rebuild the certificate cache
decrypt - decrypt and cache public keys
  • passphrase - passphrase for the found encrypted private key
  • keys-decrypted - how many keys were successfully decrypted and cached

create-certificate-request - creates an RSA certificate request to be signed by a Certificate Authority. After this, download both private key and certificate request files from the router. When you receive your signed certificate from the CA, upload it and the private key (that is made by this command) to a router and use /certificate import command to install it
  • certificate request file name - name for the certificate request file (if it already exists, it will be overwritten). This is the original certificate that will be signed by the Certificate Authority
  • file name - name of private key file. If such file does not exist, it will be created during the next step. Private key is used to encrypt the certificate
  • passphrase - the passphrase that will be used to encrypt generated private key file. You must enter it twice to be sure you have not made any typing errors
  • rsa key bits - number of bits for RSA (encryption) key. Longer keys take more time to generate. 4096 bit key takes about 30 seconds on Celeron 800 system to generate
  • country name - (C) ISO two-character country code (e.g., LV for Latvia)
  • state or province name - (ST) full name of state or province
  • locality name - (L) locality (e.g. city) name
  • organization name - (O) name of the organization or company
  • organization unit name - (OU) organization unit name
  • common name - (CN) the server's common name. For SSL web servers this must be the fully qualified domain name (FQDN) of the server that will use this certificate (like www.example.com). This is checked by web browsers
  • email address - (Email) e-mail address of the person responsible for the certificate
  • challenge password - the challenge password. It's use depends on your CA. It may be used to revoke this certificate
  • unstructured address - unstructured address (like street address). Enter only if your CA accepts or requires it

Notes

Server certificates may have ca property set to no, but Certificate Authority certificates must have it set to yes

Certificates and encrypted private keys are imported from and exported to the router's FTP server. Public keys are not stored on a router in unencrypted form. Cached decrypted private keys are stored in encrypted form, using key that is derived from the router ID. Passphrases are not stored on router.

Configuration backup does not include cached decrypted private keys. After restoring backup all certificates with private keys must be decrypted again, using decrypt command with the correct passphrase.

No other certificate operations are possible while generating a key.

When making a certificate request, you may leave some of the fields empty. CA may reject your certificate request if some of these values are incorrect or missing, so please check what are the
requirements of your CA

Example

To import a certificate and the respective private key already uploaded on the router:

```
[admin@MikroTik] certificate> import
passphrase: xxxx
 certificates-imported: 1
 private-keys-imported: 1
 files-imported: 2
 decryption-failures: 0
 keys-with-no-certificate: 1
[admin@MikroTik] certificate> print
Flags: K - decrypted-private-key, Q - private-key, R - rsa, D - dsa
 0 QR name="cert1" subject=C=LV,ST=.,O=.,CN=cert.test.mt.lv
 issuer=C=LV,ST=.,O=.,CN=third serial-number="01"
c=yes

[admin@MikroTik] certificate> decrypt
passphrase: xxxx
 keys-decrypted: 1
[admin@MikroTik] certificate> print
Flags: K - decrypted-private-key, Q - private-key, R - rsa, D - dsa
 0 KR name="cert1" subject=C=LV,ST=.,O=.,CN=cert.test.mt.lv
 issuer=C=LV,ST=.,O=.,CN=third serial-number="01"
c=yes

[admin@MikroTik] certificate>
```

Now the certificate may be used by HotSpot servlet:

```
[admin@MikroTik] ip service> print
Flags: X - disabled, I - invalid
 # NAME PORT ADDRESS CERTIFICATE
 0 telnet 23 0.0.0.0/0
 1 ftp 21 0.0.0.0/0
 2 www 8081 0.0.0.0/0
 3 hotspot 80 0.0.0.0/0
 4 ssh 22 0.0.0.0/0
 5 hotspot-ssl 443 0.0.0.0/0 none

[admin@MikroTik] ip service> set hotspot-ssl certificate=cert1
[admin@MikroTik] ip service> set hotspot-ssl certificate=cert1
[admin@MikroTik] ip service> print
Flags: X - disabled, I - invalid
 # NAME PORT ADDRESS CERTIFICATE
 0 telnet 23 0.0.0.0/0
 1 ftp 21 0.0.0.0/0
 2 www 8081 0.0.0.0/0
 3 hotspot 80 0.0.0.0/0
 4 ssh 22 0.0.0.0/0
 5 hotspot-ssl 443 0.0.0.0/0 cert1

[admin@MikroTik] ip service>
```
Dynamic DNS Update Tool

Document revision 1.2 (Fri Mar 05 09:33:48 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
Summary
Specifications
Related Documents
Description
Additional Documents
Dynamic DNS Update
Property Description
Notes
Example

General Information

Summary

Dynamic DNS Update Tool gives a way to keep domain name pointing to dynamic IP address. It works by sending domain name system update request to name server, which has a zone to be updated. Secure DNS updates are also supported.

The DNS update tool supports only one algorithm - hmac-md5. It's the only proposed algorithm for signing DNS messages.

Specifications

Packages required: advanced-tools
License required: level1
Command name: /tool dns-update
Standards and Technologies: Dynamic Updates in the DNS (RFC 2136), Secure DNS Dynamic Update (RFC 3007)
Hardware usage: Not significant

Related Documents

- Package Management

Description

Dynamic DNS Update is a tool that should be manually run to update dynamic DNS server. Note that you have to have a DNS server that supports DNS updates properly configured.
Additional Documents

• DNS related RFCs

Dynamic DNS Update

Command name: /tool dns-update

Property Description

address ( IP address ) - defines IP address associated with the domain name
dns-server ( IP address ) - DNS server to send update to
key ( text ; default: "" ) - authorization key (password of a kind) to access the server
key-name ( text ; default: "" ) - authorization key name (username of a kind) to access the server
name ( text ) - name to attach with the IP address
ttl ( integer ; default: 0 ) - time to live for the item (in seconds)
zone ( text ) - DNS zone where to update the domain name in

Notes

Example

To tell 23.34.45.56 DNS server to (re)associate mydomain name in the myzone.com zone with 68.42.14.4 IP address specifying that the name of the key is dns-update-key and the actual key is update:

[admin@MikroTik] tool> dns-update dns-server=23.34.45.56 name=mydomain \  
\... zone=myzone.com address=68.42.14.4 key-name=dns-update-key key=update
GPS Synchronization

Document revision 2.0 (Fri Mar 05 08:56:37 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
  Summary
  Specifications
  Related Documents
  Description
  Additional Documents

Synchronizing with a GPS Receiver
  Property Description
  Notes
  Example

GPS Monitoring
  Description
  Property Description
  Example

General Information

Summary

Global Positioning System (GPS) receiver can be used by MikroTik RouterOS to get the precise location and time (which may be used as NTP time source)

Specifications

Packages required: gps
License required: level1
Home menu level: /system gps
Standards and Technologies: GPS, NMEA 0183, Simple Text Output Protocol
Hardware usage: Not significant

Related Documents

- Package Management
- NTP (Network Time Protocol)

Description

Global Positioning System (GPS) is used for determining precise location of a GPS receiver. There are two types of GPS service:
• Precise Positioning Service (PPS) that is used only by U. S. and Allied military, certain U. S. Government agencies, and selected civil users specifically approved by the U. S. Government. Its accuracy is 22m horizontally, 27.7m vertically and 200ns of time

• Standard Positioning Service (SPS) can be used by civil users worldwide without charge or restrictions except that SPS accuracy is intentionally degraded to 100m horizontally, 156m vertically and 340ns of time

GPS system is based on 24 satellites rotating on 6 different orbital planes with 12h orbital period. It makes that at least 5, but usually 6 or more satellites are visible at any time anywhere on the Earth. GPS receiver calculates more or less precise position (latitude, longitude and altitude) and time based on signals received from 4 satellites (three are used to determine position and fourth is used to correct time), which are broadcasting their current positions and UTC time.

MikroTik RouterOS can communicate with many GPS receivers which are able to send the positioning and time via asynchronous serial line using NMEA 0183, NMEA/RTCM or Simple Text Output Protocol. Note that you might need to configure the router's serial port in order to work with your device. For example, many GPS receivers work on 4800bit/s bitrate, to the same would be set in the /port menu for the respective serial port.

Precise time is mainly intended to be used by built-in NTP server, which can use it as a time source without any additional configuration if GPS is configured to set system time.

Additional Documents

• Global Positioning System - How it Works

Synchronizing with a GPS Receiver

Home menu level: /system gps

Property Description

enabled (yes | no) - whether the router will communicate with a GPS receiver or not
port (name) - the port that will be used to communicate with a GPS receiver
set-system-time (time) - whether to set the system time to the value received from a GPS receiver or not

Notes

If you are synchronizing system time with a GPS device, you should correctly choose time zone if it is different from GMT as satellites are broadcasting GMT (a.k.a. UTC) time.

Example

To enable GPS communication through serial0 port:

```bash
[admin@MikroTik] system gps> print
enabled: no
port: (unknown)
set-system-time: yes
```

```bash
[admin@MikroTik] system gps> set enabled=yes port=serial0
```
GPS Monitoring

Home menu level: /system gps monitor

Description

This command is used for monitoring the data received from a GPS receiver.

Property Description

date-and-time (read-only: text) - date and time received from GPS server
longitude (read-only: text) - longitude of the current location
latitude (read-only: text) - latitude of the current location
altitude (read-only: text) - altitude of the current location
speed (read-only: text) - mean velocity
valid (read-only: yes | no) - whether the received information is valid or not (e.g. you can set a GPS receiver to the demo mode to test the connection, in which case you will receive information, but it will not be valid)

Example

[admin@MikroTik] system gps> monitor
date-and-time: jul/23/2003 12:25:00
longitude: "E 24 8' 17''"
latitude: "N 56 59' 22''"
altitude: "-127.406400m"
speed: "0.001600 km/h"
valid: yes

[admin@MikroTik] system gps>
LCD Management

Document revision 2.1 (Tue Apr 06 17:26:47 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
  Summary
  Specifications
  Related Documents
  Description
Configuring the LCD's Settings
  Property Description
  Example
LCD Information Display Configuration
  Description
  Property Description
  Notes
  Example
LCD Troubleshooting
  Description

General Information

Summary

LCDs are used to display system information.

The MikroTik RouterOS supports the following LCD hardware:

- Crystalfontz (http://www.crystalfontz.com) Intelligent Serial LCD Module 632 (16x2 characters)
- Powertip (http://www.powertip.com.tw) PC2404 (24x4 characters)

Specifications

Packages required: lcd
License required: level1
Home menu level: /system lcd
Standards and Technologies: None
Hardware usage: Not significant

Related Documents

- Package Management

Description
How to Connect PowerTip LCD to a Parallel Port

Data signals are connected that way:

<table>
<thead>
<tr>
<th>DB25m</th>
<th>Signal</th>
<th>LCD Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enable (Strobe)</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Data 0</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Data 1</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Data 2</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>Data 3</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>Data 4</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>Data 5</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>Data 6</td>
<td>13</td>
</tr>
<tr>
<td>9</td>
<td>Data 7</td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>Register Select</td>
<td>4</td>
</tr>
<tr>
<td>18-25, GND</td>
<td>Ground</td>
<td>1, 5, 16</td>
</tr>
</tbody>
</table>

Powering:

As there are only 16 pins for the PC1602 modules, you need not connect power to the 17th pin. GND and +5V can be taken from computer's internal power supply (use black wire for GND and red wire for +5V)

**WARNING!** Be very careful connecting power supply. We do not recommend using external power supplies. In no event shall MikroTik liable for any hardware damages.

**Note** that there are some PowerTip PC2404A modules that have different pin-out. Compare:

- *From www.powertip.com.tw (probably newer one)*
- *From www.actron.de (probably older one)*

Some LCDs may be connected without resistors:

<table>
<thead>
<tr>
<th>DB25m</th>
<th>Signal</th>
<th>LCD Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-25, GND</td>
<td>Ground</td>
<td>1, 3, 4, 16</td>
</tr>
<tr>
<td>+5V</td>
<td>Power</td>
<td>2, 15</td>
</tr>
</tbody>
</table>

**Crystalfontz LCD Installation Notes**

Before connecting the LCD, please check the availability of ports, their configuration, and free the desired port resource, if required:

```
[admin@MikroTik] port> print
NAME USED-BY BAUD-RATE
 0 serial0 Serial Console 9600
```

Copyright 1999-2005, MikroTik. All rights reserved. Mikrotik, RouterOS and RouterBOARD are trademarks of Mikrotikls SIA. Other trademarks and registered trademarks mentioned herein are properties of their respective owners.
Configuring the LCD’s Settings

Home menu level: /system lcd

Property Description

enabled (yes | no; default: no) - turns the LCD on or off

type (powertip | crystalfontz; default: powertip) - sets the type of the LCD

serial-port (name) - name of the port where the LCD is connected (not shown when type type=powertip)

Example

Printout:

[admin@MikroTik] system lcd> print
enabled: no
type: powertip
[admin@MikroTik] system lcd>

To enable Powertip parallel port LCD:

[admin@MikroTik] system lcd> print
enabled: no
type: powertip
[admin@MikroTik] system lcd> set enabled=yes
[admin@MikroTik] system lcd> print
enabled: yes
type: powertip
[admin@MikroTik] system lcd>

To enable Crystalfontz serial LCD on serial1:

[admin@MikroTik] system lcd> set type=crystalfontz
ERROR: can't acquire requested port - already used
[admin@MikroTik] system lcd> /port print
NAME USED-BY BAUD-RATE
0 serial0 Serial Console 9600
1 serial1 LCD Panel 9600
[admin@MikroTik] system lcd> print
enabled: yes
type: crystalfontz
serial-port: serial1
[admin@MikroTik] system lcd>

As You see, the first try to set LCD type failed because it wanted to use serial0 (that is commonly used for Serial Console) by default.

LCD Information Display Configuration

Home menu level: /system lcd page

Description

The submenu is used for configuring LCD information display: what pages and how long will be
shown.

**Property Description**

- **display-time** (time; default: 5s) - how long to display the page
- **description** (text) - page description

**Notes**

You cannot neither add your own pages (they are created dynamically depending on the configuration) nor change pages' description.

**Example**

To enable displaying all the pages:

```
[admin@MikroTik] system lcd page> print
Flags: X - disabled
DISPLAY-TIME DESCRIPTION
0 5s System date and time
1 5s System resources - cpu and memory load
2 5s System uptime
3 5s Aggregate traffic in packets/sec
4 5s Aggregate traffic in bits/sec
5 5s Software version and build info
6 5s ether1
7 5s prism1
[admin@MikroTik] system lcd page> enable [find]
[admin@MikroTik] system lcd page> print
Flags: X - disabled
DISPLAY-TIME DESCRIPTION
0 5s System date and time
1 5s System resources - cpu and memory load
2 5s System uptime
3 5s Aggregate traffic in packets/sec
4 5s Aggregate traffic in bits/sec
5 5s Software version and build info
6 5s ether1
7 5s prism1
[admin@MikroTik] system lcd page>
```

To set "System date and time" page to be displayed for 10 seconds:

```
[admin@MikroTik] system lcd page> set 0 display-time=10s
[admin@MikroTik] system lcd page> print
Flags: X - disabled
DISPLAY-TIME DESCRIPTION
0 10s System date and time
1 5s System resources - cpu and memory load
2 5s System uptime
3 5s Aggregate traffic in packets/sec
4 5s Aggregate traffic in bits/sec
5 5s Software version and build info
6 5s ether1
7 5s prism1
[admin@MikroTik] system lcd page>
```

**LCD Troubleshooting**

**Description**
LCD doesn't work, cannot be enabled by the `/system lcd set enabled=yes` command.

Probably the selected serial port is used by PPP client or server, or by the serial console. Check the availability and use of the ports by examining the output of the `/port print` command. Alternatively, select another port for connecting the LCD, or free up the desired port by disabling the related resource.

LCD doesn't work, does not show any information.

Probably none of the information display items have been enabled. Use the `/system lcd page set` command to enable the display.
MNDP

Document revision 0.3.0 (Fri Mar 05 08:36:57 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
Summary
Specifications
Related Documents
Description
Setup
  Property Description
  Example
Neighbour List
  Description
  Property Description
  Example

General Information

Summary

The MikroTik Neighbor Discovery Protocol (MNDP) eases network configuration and management by enabling each MikroTik router to discover other connected MikroTik routers and learn information about the system along with features which are enabled. The MikroTik routers can then automatically use learned information to set up some features with minimal or no configuration.

MNDP features:

• works on IP level connections
• works on all non-dynamic interfaces
• distributes basic information on the software version
• distributes information on configured features that should interoperate with other MikroTik routers

MikroTik RouterOS is able to discover both MNDP and CDP (Cisco Discovery Protocol) devices.

Specifications

Packages required: system
License required: level1
Home menu level: /ip neighbor
Standards and Technologies: MNDP
Hardware usage: Not significant

Related Documents
• **Package Management**

• **M3P**

**Description**

MNDP basic function is to assist with automatic configuration of features that are only available between MikroTik routers. Currently this is used for the 'Packet Packer' feature. The 'Packet Packer' may be enabled on a per interface basis. The MNDP protocol will then keep information about what routers have enabled the 'unpack' feature and the 'Packet Packer' will be used for traffic between these routers.

**Specific features**

- works on interfaces that support IP protocol and have at least one IP address and on all ethernet-like interfaces even without IP addresses
- is enabled by default for all new Ethernet-like interfaces -- Ethernet, wireless, EoIP, IPIP tunnels, PPTP-static-server
- when older version on the RouterOS are upgraded from a version without discovery to a version with discovery, current Ethernet like interfaces will not be automatically enabled for MNDP
- uses UDP protocol port 5678
- an UDP packet with router info is broadcasted over the interface every 60 seconds
- every 30 seconds, the router checks if some of the neighbor entries are not stale
- if no info is received from a neighbor for more than 180 seconds the neighbor information is discarded

**Setup**

Home menu level: `/ip neighbor discovery`

**Property Description**

- **name** *(read-only: name)* - interface name for reference
- **discover** *(yes | no ; default: yes)* - specifies whether the neighbour discovery is enabled or not

**Example**

To disable MNDP protocol on Public interface:

```
[admin@MikroTik] ip neighbor discovery> set Public discover=no
[admin@MikroTik] ip neighbor discovery> print
NAME DISCOVER
0 Public no
1 Local yes
```

**Neighbour List**

Home menu level: `/ip neighbor`
Description

This submenu allows you to see the list of neighbours discovered

Property Description

interface (read-only: name) - local interface name the neighbour is connected to

address (read-only: IP address) - IP address of the neighbour router

mac-address (read-only: MAC address) - MAC address of the neighbour router

identity (read-only: text) - identity of the neighbour router

version (read-only: text) - operating system or firmware version of the neighbour router

unpack (read-only: none | simple | compress-headers | compress-all) - identifies if the interface of the neighbour router is unpacking packets packed with M3P

platform (read-only: text) - hardware/software platworm type of neighbour router

age (read-only: time) - specifies the record's age in seconds (time from last update)

Example

To view the table of discovered neighbours:

```
[admin@MikroTik] ip neighbor> pri
INTERFACE ADDRESS MAC-ADDRESS IDENTITY VERSION
0 ether2 10.1.0.113 00:0C:42:00:02:06 ID 2.8
1 ether2 1.1.1.3 00:0C:42:03:02:ED MikroTik 2.8
[admin@MikroTik] ip neighbor>
```
NTP (Network Time Protocol)

Document revision NaN (Mon Jul 19 07:25:46 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
  Summary
  Specifications
  Related Documents
  Description
  Client
    Property Description
    Example
  Server
    Property Description
    Notes
    Example
  Time Zone
    Notes
    Example

General Information

Summary

NTP protocol allows synchronizing time among computers in network. It is good if there is an internet connection available and local NTP server is synchronized to correct time source. List of public NTP servers is available at http://www.eecis.udel.edu/~mills/ntp/servers.html

Specifications

Packages required: ntp
License required: level1
Home menu level: /system ntp
Standards and Technologies: NTP version 3 (RFC 1305)
Hardware usage: Not significant

Related Documents

- Package Management
- IP Addresses and ARP

Description

Network Time Protocol (NTP) is used to synchronize time with some NTP servers in a network.
MikroTik RouterOS provides both - NTP client and NTP server.

NTP server listens on UDP port 123

NTP client synchronizes local clock with some other time source (NTP server). There are 4 modes in which NTP client can operate at:

- **unicast** (Client/Server) mode - NTP client connects to specified NTP server. IP address of NTP server must be set in ntp-server and/or second-ntp-server parameters. At first client synchronizes to NTP server. Afterwards client periodically (64..1024s) sends time requests to NTP server. Unicast mode is the only one which uses ntp-server and second-ntp-server parameters.

- **broadcast** mode - NTP client listens for broadcast messages sent by NTP server. After receiving first broadcast message, client synchronizes local clock using unicast mode, and afterwards does not send any packets to that NTP server. It uses received broadcast messages to adjust local clock.

- **multicast** mode - acts the same as broadcast mode, only instead of broadcast messages (IP address 255.255.255.255) multicast messages are received (IP address 224.0.1.1).

- **manycast** mode - actually is unicast mode only with unknown IP address of NTP server. To discover NTP server, client sends multicast message (IP 239.192.1.1). If NTP server is configured to listen for these multicast messages (manycast mode is enabled), it replies. After client receives reply, it enters unicast mode and synchronizes to that NTP server. But in parallel client continues to look for more NTP servers by sending multicast messages periodically.

### Client

Home menu level: `/system ntp client`

**Property Description**

- **enabled** (yes | no ; default: no) - whether the NTP client is enabled or not
- **mode** (unicast | broadcast | multicast | manycast ; default: unicast) - NTP client mode
- **primary-ntp** (IP address ; default: 0.0.0.0) - specifies IP address of the primary NTP server
- **secondary-ntp** (IP address ; default: 0.0.0.0) - specifies IP address of the secondary NTP server
- **status** (read-only: text) - status of the NTP client:
  - **stopped** - NTP is not running (NTP is disabled)
  - **error** - there was some internal error starting NTP service (please, try to restart (disable and enable) NTP service)
  - **started** - NTP client service is started, but NTP server is not found, yet
  - **failed** - NTP server sent invalid response to our NTP client (NTP server is not synchronized to some other time source)
  - **reached** - NTP server contacted. Comparing local clock to NTP server's clock (duration of this phase is approximately 30s)
  - **timeset** - local time changed to NTP server's time (duration of this phase is approximately 30s)
  - **synchronized** - local clock is synchronized to NTP server's clock. NTP server is activated
• **using-local-clock** - using local clock as time source (server enabled while client disabled)

**Example**

To enable the NTP client to synchronize with the **159.148.60.2** server:

```
[admin@MikroTik] system ntp client> set enabled=yes primary-ntp=159.148.60.2
[admin@MikroTik] system ntp client> print
 enabled: yes
 mode: unicast
 primary-ntp: 159.148.60.2
 secondary-ntp: 0.0.0.0
 status: synchronized
[admin@MikroTik] system ntp client>
```

**Server**

Home menu level: `/system ntp server`

**Property Description**

- **broadcast** (**yes** | **no**; default: **no**) - whether NTP broadcast message is sent to 255.255.255.255 every 64s
- **enabled** (**yes** | **no**; default: **no**) - whether the NTP server is enabled
- **manycast** (**yes** | **no**; default: **yes**) - whether NTP server listens for multicast messages sent to 239.192.1.1 and responds to them
- **multicast** (**yes** | **no**; default: **no**) - whether NTP multicast message is sent to 224.0.1.1 every 64s

**Notes**

NTP server activities only when local NTP client is in **synchronized** or **using-local-clock** mode.

If NTP server is disabled, all NTP requests are ignored.

If NTP server is enabled, all individual time requests are answered.

**CAUTION!** Using **broadcast**, **multicast** and **manycast** modes is dangerous! Intruder (or simple user) can set up his own NTP server. If this new server will be chosen as time source for your server, it will be possible for this user to change time on your server at his will.

**Example**

To enable NTP server to answer unicast requests only:

```
[admin@MikroTik] system ntp server> set manycast=no enabled=yes
[admin@MikroTik] system ntp server> print
 enabled: yes
 broadcast: no
 multicast: no
 manycast: no
[admin@MikroTik] system ntp server>
```

**Time Zone**
Home menu level: `/system clock`

**Notes**

NTP changes local clock to UTC (GMT) time by default.

**Example**

Time zone is specified as a difference between local time and GMT time. For example, if GMT time is 10:24:40, but correct local time is 12:24:40, then time-zone has to be set to +2 hour:

```
[admin@MikroTik] system clock> print
time: dec/24/2003 10:24:40
time-zone: +00:00
[admin@MikroTik] system clock> set time-zone=+02:00
[admin@MikroTik] system clock> print
time: dec/24/2003 12:24:42
time-zone: +02:00
[admin@MikroTik] system clock>
```

If local time is before GMT time, time-zone value will be negative. For example, if GMT is 18:00:00, but correct local time is 15:00:00, time-zone has to be set to -3 hours:

```
[admin@MikroTik] system clock> set time-zone=-3
[admin@MikroTik] system clock> print
time: sep/24/2004 08:13:28
time-zone: -03:00
[admin@MikroTik] system clock>
```
RouterBoard-specific functions

Document revision 2.5 (Mon Oct 11 09:03:20 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
  Summary
  Specifications
BIOS upgrading
  Description
  Property Description
  Command Description
  Example
BIOS Configuration
  Description
  Property Description
  Example
System Health Monitoring
  Description
  Property Description
  Notes
  Example
LED Management
  Description
  Property Description
  Notes
  Example
Fan voltage control
  Description
  Property Description
  Console Reset Jumper
  Description

General Information

Summary

There are some features used to configure specific functions exist only in RouterBOARD 200 series:

- BIOS upgrading
- BIOS configuration
- Health monitoring
- LED control (may be used in scripting)
• Fan voltage control (on/off)
• Console reset jumper

Specifications

Packages required: routerboard
License required: level1
Home menu level: /system routerboard
Hardware usage: works only on RouterBOARD platform

BIOS upgrading

Home menu level: /system routerboard

Description

The BIOS is needed to recognize all the hardware and boot the system up. Newer BIOS versions might have support for more hardware, so it's generally a good idea to upgrade the BIOS once a newer version is available.

The newest versions of BIOS firmware is included in the newest routerboard software package. BIOS firmware may also be uploaded to router's FTP server (the file is called wlb-bios.rom). This way, for example, BIOS firmware may be transferred from one router to another.

Property Description

current-firmware (read-only: text) - the version and build date of the BIOS already flashed
routerboard (read-only: yes | no) - whether the motherboard has been detected as a RouterBOARD
upgrade-firmware (read-only: text) - the version and build date of the BIOS that is available for flashing

Command Description

upgrade - write the uploaded firmware to the BIOS (asks confirmation, and then reboots the router)

Example

To check the current and available firmware version numbers:

[admin@MikroTik] > system routerboard print
routerboard: yes
    current-firmware: "1.0.8 (Oct/03/2003 08:50:48)"
    upgrade-firmware: "1.0.8 (Oct/17/2003 19:06:26)"
[admin@MikroTik] >

To upgrade the BIOS version:

[admin@MikroTik] > system routerboard upgrade
Firmware upgrade requires reboot of the router. Continue? [y/n] y
Firmware upgrade can take up to 20s. Do NOT turn off the power!

**BIOS Configuration**

Home menu level: `/system routerboard bios`

**Description**

In addition to BIOS own setup possibilities, it is possible to configure BIOS parameters in RouterOS console

**Property Description**

- **baud-rate** (1200 | 2400 | 4800 | 9600 | 19200 | 38400 | 57600 | 115200 ; default: **9600**) - initian bitrate of the onboard serial port
- **beep-on-boot** (yes | no ; default: **yes**) - whether to beep during boot procedure (to indicate that it has succeeded)
- **boot-delay** (time : 0s ..10s ; default: **1s**) - how much time to wait for a key stroke while booting
- **debug-level** (none | low | high) - BIOS output debug level
  - **none** - no debugging output
  - **low** - show only some debugging information
  - **high** - show all debugging information about the boot process
- **memory-settings** (optimal | fail-safe ; default: **optimal**) - specifies how the RouterBoard will use the memory
- **memory-test** (yes | no ; default: **no**) - whether to test all the RAM during boot procedure. Regardless of the choice, the first megabyte of the RAM will be tested anyway. Enabling this option may cause longer boot process
- **vga-to-serial** (yes | no ; default: **yes**) - whether to map VGA output to the serial console. Should be enabled if working via serial terminal (gives much more output)

**Example**

To set high debug level with RAM test:

```
[admin@MikroTik] > system routerboard bios print
 baud-rate: 9600
 debug-level: low
 boot-delay: 1s
 beep-on-boot: yes
 vga-to-serial: yes
 memory-test: no
[admin@MikroTik] > system routerboard bios set debug-level=high ram-test=yes
[admin@MikroTik] > system routerboard bios print
 baud-rate: 9600
 debug-level: high
 boot-delay: 1s
 beep-on-boot: yes
 vga-to-serial: yes
 memory-test: yes
[admin@MikroTik] >
```
System Health Monitoring

Home menu level: /system routerboard health

Description

LM87 health controller chip provides some measurements of temperature and voltage. Information becomes available not sooner than 2 minutes after boot up. It is not available if LM87 chip is not detected successfully. All values are 10 second averages, with short peak values ignored as likely read errors.

Property Description

12v - +12V power line voltage
3.3v - +3.3V power line voltage
5v - +5V power line voltage
board-temp - temperature of the PCI area
core - CPU core voltage
cpu-temp - temperature of the CPU area
lm87-temp - temperature of the LM87 chip
state (read-only: enabled | disabled; default: disabled) - the current state of health monitoring (whether it is enabled or not)
state-after-reboot (enabled | disabled; default: disabled) - the state of the health monitor after the reboot

Notes

You cannot change state on the fly, just control, whether the health control will be enabled after reboot.

All temperature values are in Celsius degrees.

Example

To check system health:

```
[admin@MikroTik] > /system routerboard health print
 core: 1.8
 3.3v: 3.3
 5v: 5.02
 12v: 12.25
 lm87-temp: 33
 cpu-temp: 33
 board-temp: 26
 state: enabled
 state-after-reboot: enabled
```

[admin@MikroTik] >
**LED Management**

Command name: :led

**Description**

The four user LEDs of the RouterBOARD can be controlled from user-space scripts.

**Property Description**

- **led1** (yes | no; default: no) - whether the LED1 is on
- **led2** (yes | no; default: no) - whether the LED2 is on
- **led3** (yes | no; default: no) - whether the LED3 is on
- **led4** (yes | no; default: no) - whether the LED3 is on
- **length** (time; default: 0s) - how long to hold the given combination
  - 0s - no limit

**Notes**

The command does not imply a pause in execution. It works asynchronously, allowing execution to continue just after the command was entered, not waiting for LEDs to switch off.

After the given time (**length** property) the LEDs will return to the default (off) condition.

Any new :led command overrides the the previous state and resets the LED state after the **length** time interval.

**Example**

To turn LED1 on for a minute:

```
[admin@MikroTik] > :led led1=yes length=1m
[admin@MikroTik] >
```

**Fan voltage control**

Command name: /system routerboard fan-control

**Description**

Starting with version 2.8.18 you can control, whether the J11 fan 5V voltage output is enabled. This feature will only work with newest BIOS versions. This is useful in scripts to control some devices attached to the J11 connector.

**Property Description**

- **length** (time; default: 0) - how long to hold the set state value, and then return to the previous
state
  • 0 - leave the state in the set mode until restart

state (yes | no) - whether to enable the 5V output on pins 1-2 of the J11 header

**Console Reset Jumper**

**Description**

The J16 jumper on the RouterBOARD may be used as serial console reset pin. If it held short for at least 10 seconds, then:

- Serial console configuration is reset
- Serial port that serial console will pick by default (usually serial0) is set to 9600 baud 8 bit 1 stop bit no parity (default settings after installation)
- Special flag that prevents any other program except serial console to acquire this port is set
- Router is rebooted
Support Output File

Document revision 2.1.0 (Wed Mar 03 16:11:16 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
   Summary
   Specifications
Generating Support Output File
   Example

General Information

Summary

The support file is used for debugging MikroTik RouterOS and to solve the support questions faster. All MikroTik Router information is saved in a binary file, which is stored on the router and can be downloaded from the router using ftp.

Specifications

Packages required: system
License required: level1
Home menu level: /system
Hardware usage: Not significant

Generating Support Output File

Command name: /system sup-output

Example

To make a Support Output File:

[admin@MikroTik] > system sup-output
creating supout.rif file, might take a while
................
Done!
[admin@MikroTik] >

To see the files stored on the router:

[admin@MikroTik] > file print
# NAME TYPE SIZE CREATION-TIME
0 supout.rif unknown 108787 dec/24/2003 10:12:38
[admin@MikroTik] >

Connect to the router using FTP and download the supout.rif file using BINARY file transfer mode. Send the supout.rif file to MikroTik Support support@mikrotik.com with detailed description of the problem.
Important!

Support output contains: Configuration export, Installed packages, Resource usage information, Firewall and queue statistics, Log files

It does NOT contain: Passwords for accessing the router
System Resource Management

Document revision 2.0 (Fri Mar 05 09:11:42 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
  Summary
  Specifications
  Related Documents
System Resource
  Notes
  Example
IRQ Usage Monitor
  Description
  Example
IO Port Usage Monitor
  Description
  Example
USB Port Information
  Description
  Property Description
  Example
PCI Information
  Property Description
  Example
Reboot
  Description
  Notes
  Example
Shutdown
  Description
  Notes
  Example
Router Identity
  Description
  Example
Date and Time
  Property Description
  Notes
  Example
Configuration Change History
  Description
  Command Description
  Notes
  Example
General Information

Summary

MikroTik RouterOS offers several features for monitoring and managing the system resources.

Specifications

Packages required: system
License required: level1
Home menu level: /system
Standards and Technologies: None
Hardware usage: Not significant

Related Documents

- Package Management
- NTP (Network Time Protocol)

System Resource

Home menu level: /system resource

Notes

In monitor command priotout the values for cpu usage and free memory are in percentage and kilobytes, respectively.

Example

To view the basic system resource status:

```
[admin@MikroTik] > system resource print
 uptime: 1d3h2m39s
 free-memory: 26420 kB
 total-memory: 62700 kB
 cpu: "Celeron"
 cpu-frequency: 626 MHz
 cpu-load: 0
 free-hdd-space: 148524 kB
 total-hdd-space: 3123332 kB
 write-sect-since-reboot: 645208
 write-sect-total: 645208
[admin@MikroTik] >
```

To view the current system CPU usage and free memory:

```
[admin@MikroTik] > system resource monitor
 cpu-used: 0
 free-memory: 115676
[admin@MikroTik] >
```
IRQ Usage Monitor

Command name: `/system resource irq print`

Description

IRQ usage shows which IRQ (Interrupt requests) are currently used by hardware.

Example

```
[admin@MikroTik] > system resource irq print
Flags: U - unused
 IRQ OWNER
 1 keyboard
 2 APIC
 3
 4 serial port
 5 [Ricoh Co Ltd RL5c476 II (#2)]
 6
 7
 8
 9
 10
 11 ether1
 12 [Ricoh Co Ltd RL5c476 II]
 13
 14 IDE 1
[admin@MikroTik] >
```

IO Port Usage Monitor

Command name: `/system resource io print`

Description

IO usage shows which IO (Input/Output) ports are currently used by hardware.

Example

```
[admin@MikroTik] > system resource io print
PORT-RANGE OWNER
 0x20-0x3F APIC
 0x40-0x5F timer
 0x60-0x6F keyboard
 0x80-0x8F DMA
 0xA0-0xBF APIC
 0xC0-0xDF DMA
 0xF0-0xFF FPU
 0x1F0-0x1F7 IDE 1
 0x2F8-0x2FF serial port
 0x3C0-0x3DF VGA
 0x3F6-0x3F6 IDE 1
 0x3F8-0x3FF serial port
 0xCF8-0xCFFF [PCI conf1]
 0x4000-0x40FF [PCI CardBus #03]
 0x4400-0x44FF [PCI CardBus #03]
 0x4800-0x48FF [PCI CardBus #04]
 0x4C00-0x4CFF [PCI CardBus #04]
 0x5000-0x500F [Intel Corp. 82801BA/BAM SMBus]
 0x8000-0xCFFF [Realtek Semiconductor Co., Ltd. RTL-8139/8139C/8139C+]
 0xCF00-0xCF0F [8139too]
 0xCF00-0xCF07 [Cologne Chip Designs GmbH ISDN network controller [HFC-PCI]]
```
USB Port Information

Command name: /system resource usb print

Description

Shows all USB ports available for the router.

Property Description

device (read-only: text) - number of device
vendor (read-only: text) - vendor name of the USB device
name (read-only: text) - name of the USB port
speed (read-only: integer) - bandwidth speed at which the port works

Example

To list all available USB ports:

```
[admin@MikroTik] system resource usb> print
DEVICE VENDOR NAME SPEED
0 1:1 USB OHCI Root Hub 12 Mbps
[admin@MikroTik] system resource usb>
```

PCI Information

Command name: /system resource pci print

Property Description

device (read-only: text) - number of device
vendor (read-only: text) - vendor name of the USB device
name (read-only: text) - name of the USB port
irq (read-only: integer) - IRQ number which this device uses

Example

To see PCI slot details:

```
[admin@MikroTik] system resource pci> print
DEVICE VENDOR NAME IRQ
0 00:13.0 Compaq ZFMicro Chipset USB (rev... 12
1 00:12.5 National Semi SC1100 XBus (rev: 0)
2 00:12.4 National Semi SC1100 Video (rev: 1)
3 00:12.3 National Semi SCx200 Audio (rev: 0)
4 00:12.2 National Semi SCx200 IDE (rev: 1)
5 00:12.1 National Semi SC1100 SMI (rev: 0)
6 00:12.0 National Semi SC1100 Bridge (rev: 0)
```
Reboot

Command name: `/system reboot`

Description

The system reboot is required when upgrading or installing new software packages. The packages are installed during the system shutdown.

The reboot process sends termination signal to all running processes, unmounts the file systems, and reboots the router.

Notes

Only users, which are members of groups with reboot privileges are permitted to reboot the router. Reboot can be called from scripts, in which case it does not prompt for confirmation.

Example

```
[admin@MikroTik] > system reboot
Reboot, yes? [y/N]: y
system will reboot shortly
[admin@MikroTik] >
```

Shutdown

Command name: `/system shutdown`

Description

Before turning the power off for the router, the system should be brought to halt. The shutdown process sends termination signal to all running processes, unmounts the file systems, and halts the router.

For most systems, it is necessary to wait approximately 30 seconds for a safe power down.

Notes

Only users, which are members of groups with reboot privileges are permitted to shutdown the router.

Shutdown can be called from scripts, in which case it does not prompt for confirmation.

Example

```
[admin@MikroTik] > system shutdown
```
[admin@MikroTik] > system shutdown
Shutdown, yes? [y/N]: y
system will shutdown promptly
[admin@MikroTik] >

**Router Identity**

Home menu level: `/system identity`

**Description**

The router identity is displayed before the command prompt. It is also used for DHCP client as 'hostname' parameter when reporting it to the DHCP server.

**Example**

To view the router identity:

```
[admin@MikroTik] > system identity print
name: "MikroTik"
[admin@MikroTik] >
```

To set the router identity:

```
[admin@MikroTik] > system identity set name=Gateway
[admin@Gateway] >
```

**Date and Time**

Home menu level: `/system clock`

**Property Description**

- `time (time)` - date and time in format "mm/DD/YY HH:MM:SS"
- `time-zone (text)` - UTC timezone in format "+HH:MM" or "+HH:MM"

**Notes**

It is recommended that you reboot the router after time change to obviate the possible errors in time measurements and logging.

Date and time settings become permanent and effect BIOS settings.

**Example**

To view the current date and time settings:

```
[admin@Gateway] system clock> print
time: dec/24/2003 15:53:05
time-zone: +02:00
[admin@Gateway] system clock>
```

To set the system date and time:

```
[admin@Gateway] system clock> set date=dec/31/2022 time=12:11:32 time-zone=+0
```
Configuration Change History

Home menu level: Command name: `/system history`, `/undo`, `/redo`

Description

The history of system configuration changes is held until the next router shutdown. The invoked commands can be 'undone' (in reverse order they have been invoked). The 'undone' commands may be 'redone' (in reverse order they have been 'undone').

Command Description

`/undo` - undoes previous configuration changing command (except another '/undo' command)
`/redo` - undoes previous '/undo' command
`/system history print` - print a list of last configuration changes, specifying whether the action can be undone or redone

Notes

Floating-undo actions are created within the current SAFE mode session. They are automatically converted to undoable and redoable when SAFE mode terminated successfully, and are all undone irreversibly when SAFE mode terminated unsuccessfully.

Undo command cannot undo commands past start of the SAFE mode.

Example

To show the list of configuration changes:

```
[admin@MikroTik] system history> print
Flags: U - undoable, R - redoable, F - floating-undo
ACTION BY POLICY
U system time zone changed admin write
U system time zone changed admin write
U system time zone changed admin write
[admin@MikroTik] system clock>
```

What the `/undo` command does:

```
[admin@MikroTik] system history> print
Flags: U - undoable, R - redoable, F - floating-undo
ACTION BY POLICY
R system time zone changed admin write
U system time zone changed admin write
U system time zone changed admin write
U system identity changed admin write
[admin@MikroTik] system clock>
```
Bandwidth Test

This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
General Information
     Summary
     Specifications
     Related Documents
     Description
Server Configuration
     Property Description
     Notes
     Example
Client Configuration
     Property Description
     Example

General Information

Summary

The Bandwidth Tester can be used to monitor the throughput only to a remote MikroTik router (either wired or wireless) and thereby help to discover network "bottlenecks".

Specifications

Packages required: system
License required: level1
Home menu level: /tool
Standards and Technologies: TCP (RFC 793), UDP (RFC 768)
Hardware usage: significant

Related Documents

- Package Management

Description

Protocol Description

The TCP test uses the standard TCP protocol with acknowledgments and follows the TCP algorithm on how many packets to send according to latency, dropped packets, and other features in the TCP algorithm. Please review the TCP protocol for details on its internal speed settings and how
to analyze its behavior. Statistics for throughput are calculated using the entire size of the TCP packet. As acknowledgments are an internal working of TCP, their size and usage of the link are not included in the throughput statistics. Therefore this statistic is not as reliable as the UDP statistic when estimating throughput.

The UDP tester sends 110% or more packets than currently reported as received on the other side of the link. To see the maximum throughput of a link, the packet size should be set for the maximum MTU allowed by the links which is usually 1500 bytes. There is no acknowledgment required by UDP; this implementation means that the closest approximation of the throughput can be seen.

**Usage Notes**

**Caution!** Bandwidth Test uses all available bandwidth (by default) and may impact network usability.

Bandwidth Test uses much resources. If you want to test real throughput of a router, you should run bandwidth test through it not from or to it. To do this you need at least 3 routers connected in chain: the Bandwidth Server, the given router and the Bandwidth Client:

**Note** that if you use UDP protocol then Bandwidth Test counts IP header+UDP header+UDP data. In case if you use TCP then Bandwidth Test counts only TCP data (TCP header and IP header are not included).

**Server Configuration**

Home menu level: `/tool bandwidth-server`

**Property Description**

- **allocate-udp-ports-from** - allocate UDP ports from
- **authenticate** (yes | no ; default: yes) - communicate only with authenticated (by valid username and password) clients
- **enable** (yes | no ; default: no) - enable client connections for bandwidth test
- **max-sessions** - maximal number of bandwidth-test clients

**Notes**

The list of current connections can be obtained in `session` submenu

**Example**

Bandwidth Server:

```
[admin@MikroTik] tool bandwidth-server> print
 enabled: no
 authenticate: yes
 allocate-udp-ports-from: 2000
 max-sessions: 10
[admin@MikroTik] tool>
```

Active sessions:
To enable **bandwidth-test** server without client authentication:

```bash
[admin@MikroTik] tool bandwidth-server> set enabled=yes authenticate=no
```

```bash
[admin@MikroTik] tool bandwidth-server> print
 enabled: yes
 authenticate: no
 allocate-udp-ports-from: 2000
 max-sessions: 10
```

### Client Configuration

Command name: `/tool bandwidth-test`

#### Property Description

- **address (IP address)** - IP address of destination host
- **assume-lost-time (time; default: 0s)** - assume that connection is lost if Bandwidth Server is not responding for that time
- **direction (receive|transmit|both; default: receive)** - the direction of the test
- **do (name|string; default: '')** - script source
- **duration (time; default: 0s)** - duration of the test
  - **0s** - test duration is not limited
- **interval (time: 20ms..5s; default: 1s)** - delay between reports (in seconds)
- **local-tx-speed (integer; default: 0)** - transfer test maximum speed (bits per second)
  - **0** - no speed limitations
- **password (text; default: '')** - password for the remote user
- **protocol (udp|tcp; default: udp)** - protocol to use
- **random-data (yes|no; default: no)** - if random-data is set to yes, the payload of the bandwidth test packets will have incompressible random data so that links that use data compression will not distort the results (this is CPU intensive and random-data should be set to no for low speed CPUs)
- **remote-tx-speed (integer; default: 0)** - receive test maximum speed (bits per second)
  - **0** - no speed limitations
- **size** - packet size in bytes (only for UDP protocol)
- **user (name; default: '')** - remote user

#### Example

To run 15-second long bandwidth-test to the **10.0.0.211** host sending and receiving **1000**-byte UDP packets and using username **admin** to connect:

```bash
[admin@MikroTik] tool> bandwidth-test 10.0.0.211 duration=15s direction=both \
 ... size=1000 protocol=udp user=admin
```
status: done testing
duration: 15s
tx-current: 3.62Mbps
tx-10-second-average: 3.87Mbps
tx-total-average: 3.53Mbps
rx-current: 3.33Mbps
rx-10-second-average: 3.68Mbps
rx-total-average: 3.49Mbps

[admin@MikroTik] tool>
ICMP Bandwidth Test

Document revision 1.2 (Fri Mar 05 09:36:41 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
  Summary
  Specifications
  Related Documents
  ICMP Bandwidth Test
    Description
    Property Description
    Example

General Information

Summary

The ICMP Bandwidth Tester (Ping Speed) can be used to approximately evaluate the throughput to any remote computer and thereby help to discover network 'bottlenecks'.

Specifications

Packages required: advanced-tools
License required: level1
Home menu level: /tool
Standards and Technologies: ICMP (RFC792)
Hardware usage: Not significant

Related Documents

- Package Management
- IP Addresses and ARP
- Log Management

ICMP Bandwidth Test

Description

The ICMP test uses two standard echo-requests per second. The time between these pings can be changed. Ping packet size variation makes it possible to approximately evaluate connection parameters and speed with different packet sizes. Statistics for throughput is calculated using the size of the ICMP packet, the interval between ICMP echo-request and echo-reply and the differences between parameters of the first and the second packet.
Property Description

do ( name ) - assigned name of the script to start
first-ping-size ( integer : 32 ..64000 ; default: 32 ) - first ICMP packet size
second-ping-size ( integer : 32 ..64000 ; default: 1500 ) - second ICMP packet size
time-between-pings ( integer ) - the time between the first and the second ICMP echo-requests in seconds. A new ICMP-packet pair will never be sent before the previous pair is completely sent and the algorithm itself will never send more than two requests in one second
once - specifies that the ping will be performed only once
interval ( time : 20ms ..5s ) - time interval between two ping repetitions

Example

In the following example we will test the bandwidth to a host with IP address 159.148.60.2. The interval between repetitions will be 1 second.

[admin@MikroTik] tool> ping-speed 159.148.60.2 interval=1s
current: 2.23Mbps
average: 2.61Mbps

[admin@MikroTik] tool>
Packet Sniffer

Summary

Packet sniffer is a feature that catches all the data travelling over the network, that it is able to get (when using switched network, a computer may catch only the data addressed to it or is forwarded through it).

Specifications

Packet sniffer is a feature that catches all the data travelling over the network, that it is able to get (when using switched network, a computer may catch only the data addressed to it or is forwarded through it).
Packages required: system
License required: level1
Home menu level: /tool sniffer
Standards and Technologies: none
Hardware usage: Not significant

Related Documents

- Package Management

Description

It allows you to "sniff" packets going through the router (and any other traffic that gets to the router, when there is no switching in the network) and view them using specific software.

Packet Sniffer Configuration

Home menu level: /tool sniffer

Property Description

interface ( name | all ; default: all ) - the name of the interface that receives the packets

only-headers ( yes | no ; default: no ) - whether to save in the memory packets' headers only (not the whole packet)

memory-limit ( integer ; default: 10 ) - maximum amount of memory to use. Sniffer will stop after this limit is reached

file-name ( text ; default: "" ) - the name of the file where the sniffed packets will be saved to

file-limit ( integer ; default: 10 ) - the limit of the file in KB. Sniffer will stop after this limit is reached

streaming-enabled ( yes | no ; default: no ) - whether to send sniffed packets to a remote server

streaming-server ( IP address ; default: 0.0.0.0 ) - Tazmen Sniffer Protocol (TZSP) stream receiver

filter-stream ( yes | no ; default: yes ) - whether to ignore sniffed packets that are destined to the stream server

filter-protocol ( all-frames | ip-only | mac-only-no-ip ; default: ip-only ) - specific protocol group to filter
  • all-frames - sniff all packets
  • ip-only - sniff IP packets only
  • mac-only-no-ip - sniff non-IP packets only

filter-address1 ( IP address/mask:port ; default: 0.0.0.0/0-65535 ) - criterion of choosing the packets to process

filter-address2 ( IP address/mask:port ; default: 0.0.0.0/0-65535 ) - criterion of choosing the packets to process

running ( yes | no ; default: no ) - if the sniffer is started then the value is yes otherwise no
Notes

`filter-address1` and `filter-address2` are used to specify the two participants in communication (i.e. they will match only in the case if one of them matches the source address and the other one matches the destination address of a packet). These properties are taken in account only if `filter-protocol` is `ip-only`.

Not only Ethernal (http://www.ethereal.com) and Packetyzer (http://www.packetyzer.com) can receive the sniffer’s stream but also MikroTik’s program `trafr` (http://www.mikrotik.com/download.html) that runs on any IA32 Linux computer and saves received packets libpcap file format.

Example

In the following example `streaming-server` will be added, streaming will be enabled, `file-name` will be set to `test` and packet sniffer will be started and stopped after some time:

```
[admin@MikroTik] tool sniffer> set streaming-server=10.0.0.241 \\
... streaming-enabled=yes file-name=test
[admin@MikroTik] tool sniffer> prin
 interface: all
 only-headers: no
 memory-limit: 10
 file-name: "test"
 file-limit: 10
 streaming-enabled: yes
 streaming-server: 10.0.0.241
 filter-stream: yes
 filter-protocol: ip-only
 filter-address1: 0.0.0.0/0:0-65535
 filter-address2: 0.0.0.0/0:0-65535
 running: no
[admin@MikroTik] tool sniffer>start
[admin@MikroTik] tool sniffer>stop
```

Running Packet Sniffer

Command name: `/tool sniffer start`, `/tool sniffer stop`, `/tool sniffer save`

Description

The commands are used to control runtime operation of the packet sniffer. The `start` command is used to start/reset sniffering, `stop` - stops sniffering. To save currently sniffed packets in a specific file `save` command is used.

Example

In the following example the packet sniffer will be started and after some time - stopped:

```
[admin@MikroTik] tool sniffer> start
[admin@MikroTik] tool sniffer> stop
```

Below the sniffed packets will be saved in the file named `test`:

```
[admin@MikroTik] tool sniffer> save file-name=test
[admin@MikroTik] tool sniffer> /file print
NAME TYPE SIZE CREATION-TIME
```
## Sniffed Packets

Home menu level: `/tool sniffer packet`

### Description

The submenu allows to see the list of sniffed packets.

### Property Description

- **data** *(read-only: text)* - specified data inclusion in packets
- **dst-address** *(read-only: IP address)* - IP destination address
- **fragment-offset** *(read-only: integer)* - IP fragment offset
- **identification** *(read-only: integer)* - IP identification
- **ip-header-size** *(read-only: integer)* - the size of IP header
- **ip-packet-size** *(read-only: integer)* - the size of IP packet
- **ip-protocol** *(ip | icmp | igmp | ggp | ipencap | st | tcp | egp | pup | udp | hmp | xns-idp | rdp | iso-tp4 | xtp | ddp | idrp-cmtp | gre | esp | ah | rspf | vmtpl | ospf | ipip | encap)* - the name/number of IP protocol
  - **ip** - Internet Protocol
  - **icmp** - Internet Control Message Protocol
  - **igmp** - Internet Group Management Protocol
  - **ggp** - Gateway-Gateway Protocol
  - **ipencap** - IP Encapsulated in IP
  - **st** - st datagram mode
  - **tcp** - Transmission Control Protocol
  - **egp** - Exterior Gateway Protocol
  - **pup** - Parc Universal packet Protocol
  - **udp** - User Datagram Protocol
  - **hmp** - Host Monitoring Protocol
  - **xns-idp** - Xerox ns idp
  - **rdp** - Reliable Datagram Protocol
  - **iso-tp4** - ISO Transport Protocol class 4
  - **xtp** - Xpress Transfer Protocol
  - **ddp** - Datagram Delivery Protocol
  - **idpr-cmtp** - idpr Control Message Transport
  - **gre** - General Routing Encapsulation
  - **esp** - IPsec ESP protocol
• **ah** - IPsec AH protocol
• **rspb** - Radio Shortest Path First
• **vmtp** - Versatile Message Transport Protocol
• **ospf** - Open Shortest Path First
• **ipip** - IP encapsulation (protocol 4)
• **encap** - IP encapsulation (protocol 98)

**protocol** (read-only: *ip | arp | rarp | ipx | ipv6*) - the name/number of ethernet protocol
• **ip** - Internet Protocol
• **arp** - Address Resolution Protocol
• **rarp** - Reverse Address Resolution Protocol
• **ipx** - Internet Packet exchange protocol
• **ipv6** - Internet Protocol next generation

**size** (read-only: integer) - size of packet

**src-address** (IP address) - source address

**time** (read-only: time) - time when packet arrived

**tos** (read-only: integer) - IP Type Of Service

**ttl** (read-only: integer) - IP Time To Live

**Example**

In the example below it's seen, how to get the list of sniffed packets:

```
[admin@MikroTik] tool sniffer packet> pr
TIME INTERFACE SRC-ADDRESS DST-ADDRESS IP-... SIZE
 0 0.12 ether1 10.0.0.241:1839 10.0.0.181:23 (telnet) tcp 46
 1 0.12 ether1 10.0.0.241:1839 10.0.0.181:23 (telnet) tcp 40
 2 0.12 ether1 10.0.0.181:23 (telnet) 10.0.0.241:1839 tcp 78
 3 0.292 ether1 10.0.0.181 10.0.0.4 gre 88
 4 0.32 ether1 10.0.0.241:1839 10.0.0.181:23 (telnet) tcp 40
 5 0.744 ether1 10.0.0.144:2265 10.0.0.181:22 (ssh) tcp 76
 6 0.744 ether1 10.0.0.144:2265 10.0.0.181:22 (ssh) tcp 76
 7 0.744 ether1 10.0.0.144:2265 10.0.0.181:22 (ssh) tcp 40
 8 0.744 ether1 10.0.0.144:2265 10.0.0.181:22 (ssh) tcp 76
```

**Packet Sniffer Protocols**

Home menu level: /tool sniffer protocol

**Description**

In this submenu you can see all kind of protocols that have been sniffed.

**Property Description**

**bytes** (integer) - total number of data bytes

**protocol** (read-only: *ip | arp | rarp | ipx | ipv6*) - the name/number of ethernet protocol
• **ip** - Internet Protocol
• **arp** - Address Resolution Protocol
• **rarp** - Reverse Address Resolution Protocol
• **ipx** - Internet Packet exchange protocol
• **ipv6** - Internet Protocol next generation

**ip-protocol** ( ip | icmp | igmp | ggp | ipencap | st | tcp | egp | pup | udp | hmp | xns-idp | rdp | iso-tp4 | xtp | ddp | idrp-cmtp | gre | esp | ah | rs pf | vmt p | ospf | ipip | encap ) - the name/number of IP protocol

• **ip** - Internet Protocol
• **icmp** - Internet Control Message Protocol
• **igmp** - Internet Group Management Protocol
• **ggp** - Gateway-Gateway Protocol
• **ipencap** - IP Encapsulated in IP
• **st** - st datagram mode
• **tcp** - Transmission Control Protocol
• **egp** - Exterior Gateway Protocol
• **pup** - Parc Universal packet Protocol
• **udp** - User Datagram Protocol
• **hmp** - Host Monitoring Protocol
• **xns-idp** - Xerox ns idp
• **rdp** - Reliable Datagram Protocol
• **iso-tp4** - ISO Transport Protocol class 4
• **xtp** - Xpress Transfer Protocol
• **ddp** - Datagram Delivery Protocol
• **idpr-cmtp** - idpr Control Message Transport
• **gre** - General Routing Encapsulation
• **esp** - IPsec ESP protocol
• **ah** - IPsec AH protocol
• **rs pf** - Radio Shortest Path First
• **vmt p** - Versatile Message Transport Protocol
• **ospf** - Open Shortest Path First
• **ipip** - IP encapsulation
• **encap** - IP encapsulation

**packets** ( integer ) - the number of packets

**port** ( name ) - the port of TCP/UDP protocol

**share** ( integer ) - specific type of traffic compared to all traffic in bytes

### Example

```
[admin@MikroTik] tool sniffer protocol> print
PROTOCOL IP-PR... PORT PACKETS BYTES SHARE
 0 ip 77 4592 100 %
```

Copyright 1999-2005, MikroTik. All rights reserved. Mikrotik, RouterOS and RouterBOARD are trademarks of Mikrotikls SIA. Other trademarks and registered trademarks mentioned herein are properties of their respective owners.
Packet Sniffer Host

Home menu level: /tool sniffer host

Description

The submenu shows the list of hosts that were participating in data exchange you've sniffed.

Property Description

address (read-only: IP address) - IP address of the host
peek-rate (read-only: integer/integer) - the maximum data-rate received/transmitted
rate (read-only: integer/integer) - current data-rate received/transmitted
total (read-only: integer/integer) - total packets received/transmitted

Example

In the following example we'll see the list of hosts:

[admin@MikroTik] tool sniffer host> print
# ADDRESS RATE PEEK-RATE TOTAL
0 10.0.0.4 0bps/0bps 704bps/0bps 264/0
1 10.0.0.144 0bps/0bps 6.24kbps/12.2kbps 1092/2128
2 10.0.0.181 0bps/0bps 12.2kbps/6.24kbps 2994/1598
3 10.0.0.241 0bps/0bps 1.31kbps/4.85kbps 242/866

Packet Sniffer Connections

Home menu level: /tool sniffer connection

Description

Here you can get a list of the connections that have been watched during the sniffing time.

Property Description

active (read-only: yes | no) - if yes the find active connections
bytes (read-only: integer) - bytes in the current connection
dst-address (read-only: IP address) - destination address
mss (read-only: integer) - Maximum Segment Size
resends (read-only: integer) - the number of packets resends in the current connection
src-address (read-only: IP address) - source address
Example

The example shows how to get the list of connections:

[admin@MikroTik] tool sniffer connection> print
Flags: A - active
# SRC-ADDRESS DST-ADDRESS BYTES RESENDS MSS
0 A 10.0.0.241:1839 10.0.0.181:23 (telnet) 6/42 60/0 0/0
1 A 10.0.0.144:2265 10.0.0.181:22 (ssh) 504/252 504/0 0/0
[admin@MikroTik] tool sniffer connection>

Sniff MAC Address

You can also see the source and destination MAC Addresses. To do so, at first stop the sniffer if it is running, and select a specific interface:

[admin@MikroTik] tool sniffer> stop
[admin@MikroTik] tool sniffer> set interface=bridge1
[admin@MikroTik] tool sniffer> start
[admin@MikroTik] tool sniffer> print
  interface: bridge1
  only-headers: no
  memory-limit: 10
  file-name:
  streaming-enabled: no
  streaming-server: 0.0.0.0
  filter-stream: yes
  filter-protocol: ip-only
  filter-address1: 0.0.0.0/0:0-65535
  filter-address2: 0.0.0.0/0:0-65535
  running: yes
[admin@MikroTik] tool sniffer>

Now you have the source and destination MAC Addresses:

[admin@MikroTik] tool sniffer packet> print detail
0 time=0 src-mac-address=00:0C:42:03:02:C7 dst-mac-address=00:30:4F:08:3A:E7
  interface=bridge1 src-address=10.5.8.104:1125 dst-address=10.1.0.172:3987 (winbox-tls)
  protocol=ip ip-protocol=tcp size=146 ip-packet-size=146 ip-header-size=20 tos=0 identification=5088
  fragment-offset=0 ttl=126
1 time=0 src-mac-address=00:30:4F:08:3A:E7 dst-mac-address=00:0C:42:03:02:C7
  interface=bridge1 src-address=10.1.0.172:3987 (winbox-tls) dst-address=10.5.8.104:1125 protocol=ip ip-protocol=tcp size=253
  ip-packet-size=253 ip-header-size=20 tos=0 identification=41744
  fragment-offset=0 ttl=64
2 time=0.071 src-mac-address=00:0C:42:03:02:C7 dst-mac-address=00:30:4F:08:3A:E7
  interface=bridge1 src-address=10.1.0.172:3987 (winbox-tls) dst-address=10.5.8.104:1125 protocol=ip ip-protocol=tcp size=40
  ip-packet-size=40 ip-header-size=20 tos=0 identification=5089 fragment-offset=0 ttl=126
3 time=0.071 src-mac-address=00:30:4F:08:3A:E7 dst-mac-address=00:0C:42:03:02:C7
  interface=bridge1 src-address=10.1.0.172:3987 (winbox-tls) dst-address=10.5.8.104:1125 protocol=ip ip-protocol=tcp size=213
  ip-packet-size=213 ip-header-size=20 tos=0 identification=41745 fragment-offset=0 ttl=64
-- [Q quit|D dump|down]
Ping

Document revision 1 (Mon Jul 19 09:36:24 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
General Information
   Summary
   Specifications
   Related Documents
   Description
The Ping Command
   Property Description
   Notes
   Example
MAC Ping Server
   Property Description
   Example

General Information

Summary

Ping uses Internet Control Message Protocol (ICMP) Echo messages to determine if a remote host is active or inactive and to determine the round-trip delay when communicating with it.

Specifications

Packages required: system
License required: level1
Home menu level: /, /tool mac-server ping
Standards and Technologies: ICMP
Hardware usage: Not significant

Related Documents

- Package Management

Description

Ping sends ICMP echo (ICMP type 8) message to the host and waits for the ICMP echo-reply (ICMP type 0) from that host. The interval between these events is called round trip. If the response (that is called pong) has not come until the end of the interval, we assume it has timed out. The second significant parameter reported is ttl (Time to Live). Is is decremented at each machine in which the packet is processed. The packet will reach its destination only when the ttl is greater than the number of routers between the source and the destination.
The Ping Command

Command name: /ping

Property Description

( IP address | MAC address ) - IP or MAC address for destination host

- count ( integer ; default: 0 ) - how many times ICMP packets will be sent
  - 0 - Ping continues till [Ctrl]+[C] is pressed

- do-not-fragment - if added, packets will not be fragmented

- interval ( time : 10ms .5s ; default: 1s ) - delay between messages

- size ( integer : 28 .65535 ; default: 64 ) - size of the IP packet (in bytes, including the IP and ICMP headers)

- ttl ( integer : 1 .255 ; default: 255 ) - time To Live (TTL) value of the ICMP packet

Notes

If DNS service is configured, it is possible to ping by DNS address. To do it from Winbox, you should resolve DNS address first, pressing right mouse button over it address and choosing Lookup Address.

You can not ping with packets larger that the MTU of that interface, so the packet size should always be equal or less than MTU. If 'pinging' by MAC address, minimal packet size is 50.

Only neighbour MikroTik RouterOS routers with MAC-ping feature enabled can be 'pinged' by MAC address.

Example

An example of Ping command:

```
[admin@MikroTik] > ping 159.148.60.2 count=5 interval=40ms size=64
159.148.60.2 64 byte pong: ttl=247 time=32 ms
159.148.60.2 64 byte pong: ttl=247 time=30 ms
159.148.60.2 64 byte pong: ttl=247 time=40 ms
159.148.60.2 pong timeout
159.148.60.2 64 byte pong: ttl=247 time=28 ms
5 packets transmitted, 4 packets received, 20% packet loss
round-trip min/avg/max = 28/32.5/40 ms
[admin@MikroTik] >
```

MAC Ping Server

Home menu level: /tool mac-server ping

Property Description

- enabled ( yes | no ; default: yes ) - whether MAC pings to this router are allowed

Example
To disable MAC pings:

```bash
[admin@MikroTik] tool mac-server ping> set enabled=no
[admin@MikroTik] tool mac-server ping> print
 enabled: no
[admin@MikroTik] tool mac-server ping>
```
Torch (Realtime Traffic Monitor)

Document revision 1.2 (Fri Mar 05 09:45:04 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
General Information
  Summary
  Specifications
  Related Documents
  Description
The Torch Command
  Property Description
  Notes
  Example

General Information

Summary

Realtime traffic monitor may be used to monitor the traffic flow through an interface.

Specifications

Packages required: system
License required: level1
Home menu level: /tool
Standards and Technologies: none
Hardware usage: Not significant

Related Documents

- Package Management

Description

Realtime Traffic Monitor called also torch is used for monitoring traffic that is going through an interface. You can monitor traffic classified by protocol name, source address, destination address, port. Torch shows the protocols you have chosen and mean transmitted and received data rate for each of them.

The Torch Command

Command name: /tool torch

Property Description
**interface** (name) - the name of the interface to monitor

**protocol** (any | any-ip | icmp | igmp | ipip | ospf | pup | tcp | udp | integer) - the name or number of the protocol
  
  • any - any ethernet or IP protocol
  
  • any-ip - any IP protocol

**port** (name | integer) - the name or number of the port

**source-address** (IP address/mask) - source address and network mask to filter the traffic only with such an address, any source address: 0.0.0.0/0

**destination-address** (IP address/mask) - destination address and network mask to filter the traffic only with such an address, any destination address: 0.0.0.0/0

**Notes**

If there will be specific port given, then only tcp and udp protocols will be filtered, i.e., the name of the protocol can be any, any-ip, tcp, udp.

Except TX and RX, there will be only the field you've specified in command line in the command's output (e.g., you will get PROTOCOL column only in case if protocol property is explicitly specified).

**Example**

The following example monitors the traffic that goes through the **ether1** interface generated by **telnet** protocol:

```
[admin@MikroTik] tool> torch ether1 port=telnet
SRC-PORT DST-PORT TX RX
1439 23 (telnet) 1.7kbps 368bps
```

To see what IP protocols are going through the **ether1** interface:

```
[admin@MikroTik] tool> torch ether1 protocol=any-ip
PRO.. TX RX
tcp 1.06kbps 608bps
udp 896bps 3.7kbps
icmp 480bps 480bps
ospf 0bps 192bps
```

To see what IP protocols are interacting with **10.0.0.144/32** host connected to the **ether1** interface:

```
[admin@MikroTik] tool> torch ether1 src-address=10.0.0.144/32 protocol=any
PRO.. SRC-ADDRESS TX RX
tcp 10.0.0.144 1.01kbps 608bps
icmp 10.0.0.144 480bps 480bps
```

To see what tcp/udp protocols are going through the **ether1** interface:

```
[admin@MikroTik] tool> torch ether1 protocol=any-ip port=any
PRO.. SRC-PORT DST-PORT TX RX
tcp 3430 22 (ssh) 1.06kbps 608bps
udp 2812 1813 (radius-acct) 512bps 2.11kbps
tcp 1059 139 (netbios-ssn) 248bps 360bps
```
[admin@MikroTik] tool>
Traceroute

Document revision 1.2 (Fri Mar 05 09:48:20 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
General Information
   Summary
   Specifications
   Related Documents
   Description
The Traceroute Command
   Property Description
   Notes
   Example

General Information

Summary

Traceroute determines how packets are being routed to a particular host.

Specifications

Packages required: system
License required: level1
Home menu level: /tool
Standards and Technologies: ICMP, UDP, Traceroute
Hardware usage: Not significant

Related Documents

- Package Management
- IP Addresses and ARP
- Firewall Filters
- Ping

Description

Traceroute is a TCP/IP protocol-based utility, which allows user to determine how packets are being routed to a particular host. Traceroute works by increasing the time-to-live value of packets and seeing how far they get until they reach the given destination; thus, a lengthening trail of hosts passed through is built up.

Traceroute shows the number of hops to the given host address of every passed gateway. Traceroute
utility sends packets three times to each passed gateway so it shows three timeout values for each gateway in ms.

**The Traceroute Command**

Command name: `/tool traceroute`

**Property Description**

( **IP address** ) - IP address of the host you are tracing route to  
**port** ( *integer* : 0 ..65535 ) - UDP port number  
**protocol** ( **UDP** | **ICMP** ) - type of protocol to use. If one fails (for example, it is blocked by a firewall), try the other  
**size** ( *integer* : 28 ..1500 ; default: 64 ) - packet size in bytes  
**timeout** ( *time* : 1s ..8s ; default: 1s ) - response waiting timeout, i.e. delay between messages  
**tos** ( *integer* : 0 ..255 ; default: 0 ) - Type Of Service - parameter of IP packet  
**use-dns** ( *yes* | *no* ; default: no ) - specifies whether to use DNS server, which can be set in `/ip dns menu`  
**src-address** ( **IP address** ) - change the source address of the packet

**Notes**

Traceroute session may be stopped by pressing [Ctrl]+[C].

**Example**

To trace the route to 216.239.39.101 host using ICMP protocol with packet size of 64 bytes, setting ToS field to 8 and extending the timeout to 4 seconds:

```
[admin@MikroTik] tool> traceroute 216.239.39.101 protocol=icmp size=64 tos=8 timeout=4s
```

<table>
<thead>
<tr>
<th>ADDRESS</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 159.148.60.227</td>
<td>3ms 3ms 3ms</td>
</tr>
<tr>
<td>2 195.13.173.221</td>
<td>80ms 169ms 14ms</td>
</tr>
<tr>
<td>3 195.13.173.28</td>
<td>6ms 4ms 4ms</td>
</tr>
<tr>
<td>4 195.158.240.21</td>
<td>11ms 110ms 110ms</td>
</tr>
<tr>
<td>5 213.174.71.49</td>
<td>124ms 120ms 129ms</td>
</tr>
<tr>
<td>6 213.174.71.134</td>
<td>139ms 146ms 135ms</td>
</tr>
<tr>
<td>7 213.174.70.245</td>
<td>132ms 131ms 136ms</td>
</tr>
<tr>
<td>8 213.174.70.58</td>
<td>211ms 215ms 215ms</td>
</tr>
<tr>
<td>9 195.158.229.130</td>
<td>225ms 239ms 0s</td>
</tr>
<tr>
<td>10 216.32.223.114</td>
<td>283ms 269ms 281ms</td>
</tr>
<tr>
<td>11 216.32.132.14</td>
<td>267ms 260ms 266ms</td>
</tr>
<tr>
<td>12 209.185.9.102</td>
<td>296ms 296ms 290ms</td>
</tr>
<tr>
<td>13 216.109.66.1</td>
<td>288ms 297ms 294ms</td>
</tr>
<tr>
<td>14 216.109.66.90</td>
<td>297ms 317ms 319ms</td>
</tr>
<tr>
<td>15 216.239.47.66</td>
<td>137ms 136ms 134ms</td>
</tr>
<tr>
<td>16 216.239.47.46</td>
<td>135ms 134ms 134ms</td>
</tr>
<tr>
<td>17 216.239.39.101</td>
<td>134ms 134ms 135ms</td>
</tr>
</tbody>
</table>

[admin@MikroTik] tool>
Scripting Host and Complementary Tools

This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
  Summary
  Specifications
  Related Documents
Console Command Syntax
  Description
  Notes
  Example
Expression Grouping
  Description
  Notes
  Example
Variables
  Description
  Notes
  Example
Command Substitution and Return Values
  Description
  Example
Operators
  Description
  Command Description
  Notes
  Example
Data types
  Description
Internal Console Expressions (ICE)
  Description
  Command Description
Special Actions
  Description
  Notes
  Example
Additional Features
  Description
Scripts
  Description
  Property Description
  Command Description
  Notes
  Example
**Task Management**
- **Description**
- **Property Description**
- **Example**

**Script Editor**
- **Description**
- **Command Description**
- **Notes**
- **Example**

**System Scheduler**
- **Specifications**
- **Description**
- **Property Description**
- **Notes**
- **Example**

**Network Watching Tool**
- **Specifications**
- **Description**
- **Property Description**
- **Example**

**Traffic Monitor**
- **Specifications**
- **Description**
- **Property Description**
- **Example**

**Sigwatch**
- **Specifications**
- **Description**
- **Property Description**
- **Notes**
- **Example**

---

**General Information**

**Summary**

This manual describes the usage of internal console expressions as well as techniques to combine them in scripts.

Scripting host provides a way to automate some router maintenance tasks by means of executing user-defined scripts if some event occurs. The script consists of configuration commands and console expressions. The configuration commands are described in the relevant documentation.

The events can be used to invoke a script include the System Scheduler, the Traffic Monitoring Tool, and for the Netwatch Tool generated events.

**Specifications**

Packages required: `system`
Related Documents

- Package Management

Console Command Syntax

Description

Console commands are made of following parts:

- **prefix** - optional parts which indicates whether that the command is an ICE, like :put or that the **path** starts from the root menu level, like /ping 10.0.0.1
- **path** - a relative path to the desired menu level
- **path_args** - this part is required to select some menu levels, where the actual path can vary across different user inputs, like /ip firewall rule <name>
- **action** - one of the **actions** available at the specified menu level
- **action_args** - these are required by some actions and should come in fixed order after the action name, like in /ping <ip address>
- **params[=values]** - a sequence of parameter names followed respective values, if required

Notes

Variable substitution, command substitution and expressions are allowed only for **path_args** and **action_args** values. **prefix**, **path**, **action** and **params** can only be given directly, as a word. So, :put (1 + 2) is valid and ":pu" . "τ" 3 is not.

Example

The internal console commands' parts are further explained in the following examples:

```
/ping 10.0.0.1 count=5
```

<table>
<thead>
<tr>
<th>prefix</th>
<th>/</th>
</tr>
</thead>
<tbody>
<tr>
<td>action</td>
<td>ping</td>
</tr>
<tr>
<td>action_args</td>
<td>10.0.0.1</td>
</tr>
<tr>
<td>params[=values]</td>
<td>count=5</td>
</tr>
</tbody>
</table>

.. ip firewall rule input

<table>
<thead>
<tr>
<th>path</th>
<th>.. ip firewall rule</th>
</tr>
</thead>
</table>

---

Page 460 of 521

Copyright 1999-2005, MikroTik. All rights reserved. MikroTik, RouterOS and RouterBOARD are trademarks of Mikrotiks SIA. Other trademarks and registered trademarks mentioned herein are properties of their respective owners.
Expression Grouping

Description

This feature provides the easy way to execute commands from within one command level, by enclosing them in braces '{ }' or square brackets '[ ]'. Square brackets can be used only in a single line and give the ability for command auto-completion, by pressing the [Tab] key twice.

Notes

You should not change current command level in scripts by typing just it's path, without any command, like you when working with console interactively. Such changes have no effect in scripts. Consider the following:

```
admin@MikroTik> ip address> /user {
 {... /ip route
 {... print
 {... } Flags: X - disabled
 0 ;;; system default user
 name="admin" group=full address=0.0.0.0/0
 1 name="x" group=write address=0.0.0.0/0
 2 name="y" group=write address=0.0.0.0/0

[admin@MikroTik] ip route>
```

Although the current command level is changed to /ip route, it has effect only on next command entered from prompt, print command is still considered to be /user print.

Example

We will add two users to the user menu in the example below:
[admin@MikroTik] ip address> /user {
  ... add name=x password=y group=write
  ... add name=y password=z group=read
  ... print
  ... }
Flags: X - disabled
0 ;;; system default user
   name="admin" group=full address=0.0.0.0/0
1 name="x" group=write address=0.0.0.0/0
2 name="y" group=read address=0.0.0.0/0

[admin@MikroTik] ip address>

Variables

Description

Console allows you to create and use global (system wide) and local (only usable within the current
script) variables. Variables can be accessed by writing '$' followed by a name of variable. Variable
names can contain letters, digits and '-' character. A variable must be declared prior to using it in
scripts. There are three types of declaration available:

- **global** - defined by action global, global variables can be accessed by all scripts and console
  logins on the same router. Variables are not kept across reboots.

- **local** - defined by action local, local variables are not shared with any other script, other
  instance of the same script or other console logins. Its value is lost when script finishes.

- **loop index variables** - defined within for and foreach statements, these variables are used only
  in do block of commands and are removed after command completes.

- **monitor action** - some monitor commands that have do part can also introduce variables.

You can assign a new value to a variable using **set** action. It has two arguments: the name of the
variable and the new value of the variable. After variable is no longer needed, it's name can be freed
by :unset command. If you free local variable, it's value is lost. If you free global variable, it's value
is still kept in router, it just becomes inaccessible from current script.

Notes

Loop variables "shadows" already introduced local variables with the same name.

Example

```plaintext
[admin@MikroTik] ip route> /
[admin@MikroTik] > :global g1
[admin@MikroTik] > :set g1 "this is global variable"
[admin@MikroTik] > :put $g1
this is global variable
[admin@MikroTik] >
```

Command Substitution and Return Values
Description

Some console commands are most useful if their output can be used as an argument value in other commands. In console, this is done by "returning" value from commands. Return value is not displayed on the screen. When you type such a command between square brackets `[ ]`, this command is executed and it's return value is used as the value of these brackets. This is called command substitution.

The commands that return useful values are, but not limited to: **find, /ping** - returns the number of successful pings, **time** - returns the measured time value, **incr** and **decr** return the new value of a variable, **add** - return the internal number of newly created item.

Example

Consider the usage of **find** command:

```
[admin@MikroTik] > /interface
[admin@MikroTik] interface> find type=ether
[admin@MikroTik] interface> :put [find type=ether]
```

This way you can see console internal numbers of items. Naturally, you can use them in other commands:

```
[admin@MikroTik] interface> enable [find type=ether]
```

Operators

Description

Console can do simple calculations with numbers, time values, ip addresses, strings and lists. It is achieved by writing expressions and putting them in parentheses `(' and ')'. The result of the expression serves as a return value for the parentheses.

Command Description

- - unary minus. Inverts given number value.
- - binary minus. Subtracts two numbers, two time values, two IP addresses or an IP address and a number
! - logical NOT. Unary operator, which inverts given boolean value
/ - division. Binary operator. Divides one number by another (gives number) or a time value by a number (gives time value).
. - concatenation. Binary operator, concatenates two string or append one list to another or appends an element to a list.
^ - bitwise XOR. The arguments and the result are both IP addresses
~ - bit inversion. Unary operator, which inverts bits in IP address
* - multiplication. Binary operator, which can multiply two numbers or a time value by a number.
& - bitwise AND The argumens and the result are both IP addresses
&& - logical AND. Binary operator. The argumens and the result are both logical values
+ - binary plus. Adds two numbers, two time values or a number and an IP address.
< - less. Binary operator which compares two numbers, two time values or two IP addresses. Returns boolean value
<< - left shift. Binary operator, which shifts IP address by a given amount of bits. The first argument is an IP address, the second is an integer and the result is an IP address.
<= - less or equal. Binary operator which compares two numbers, two time values or two IP addresses. Returns boolean value
> - greater. Binary operator which compares two numbers, two time values or two IP addresses. Returns boolean value
>= - greater or equal. Binary operator which compares two numbers, two time values or two IP addresses. Returns boolean value
>> - right shift. Binary operator, which shifts IP address by a given amount of bits. The first argument is an IP address, the second is an integer and the result is an IP address.
| - bitwise OR. The argumens and the result are both IP addresses
|| - logical OR. Binary operator. The argumens and the result are both logical values

Notes

When comparing two arrays note, that two arrays are equal if their respective elements are equal.

Example

Operator priority and evaluation order

```
[admin@MikroTik] ip firewall rule forward> :put (10+1-6*2=11-12=2+(-3)=-1)
false
[admin@MikroTik] ip firewall rule forward> :put (10+1-6*2-11-12=(2+(-3)=-1))
true
[admin@MikroTik] ip firewall rule forward
```

logical NOT

```
[admin@MikroTik] interface> :put (!true)
false
[admin@MikroTik] interface> :put (!2>3))
true
[admin@MikroTik] interface>
```

unary minus

```
[admin@MikroTik] interface> :put (-1<0)
true
[admin@MikroTik] > :put (--1)
1
```

bit inversion

```
[admin@MikroTik] interface> :put (~255.255.0.0)
0.0.255.255
[admin@MikroTik] interface>
```
sum

[admin@MikroTik] interface> :put (3s + 5s)
8s
[admin@MikroTik] interface> :put (10.0.0.15 + 0.0.10.0)
ERROR: cannot add ip address to ip address
[admin@MikroTik] interface> :put (10.0.0.15 + 10)
10.0.0.25
[admin@MikroTik] interface>

subtraction

[admin@MikroTik] interface> :put (15 - 10)
5
[admin@MikroTik] interface> :put (10.0.0.15 - 10.0.0.3)
12
[admin@MikroTik] interface> :put (10.0.0.15 - 12)
10.0.0.3
[admin@MikroTik] interface> :put (15h - 2s)
14h59m58s
[admin@MikroTik] interface>

multiplication

[admin@MikroTik] interface> :put (12s * 4)
48s
[admin@MikroTik] interface> :put (-5 * -2)
10
[admin@MikroTik] interface>

division

[admin@MikroTik] interface> :put (10s / 3)
3s333.333ms
[admin@MikroTik] interface> :put (5 / 2)
2
[admin@MikroTik] interface>

comparison

[admin@MikroTik] interface> :put (10.0.2.3<=2.0.3.10)
false
[admin@MikroTik] interface> :put (100000s>27h)
true
[admin@MikroTik] interface> :put (60s,1d!=1m,3600s)
false
[admin@MikroTik] interface> :put (bridge=routing)
false
[admin@MikroTik] interface> :put (yes=false)
false
[admin@MikroTik] interface> :put (true=aye)
ERROR: cannot compare if truth value is equal to string
[admin@MikroTik] interface>

logical AND, logical OR

[admin@MikroTik] interface> :put ((yes && yes) || (yes && no))
true
[admin@MikroTik] interface> :put ((no || no) && (no || yes))
false
[admin@MikroTik] interface>

bitwise AND, bitwise OR, bitwise XOR

[admin@MikroTik] interface> :put (10.16.0.134 & ~255.255.255.0)
0.0.0.134
[admin@MikroTik] interface>

shift operators
[admin@MikroTik] interface> :put (~(0.0.0.1 << 7) - 1))
255.255.255.128
[admin@MikroTik] interface>

Concatenation

[admin@MikroTik] interface> :put (1 . 3)
13
[admin@MikroTik] interface> :put (1,2 . 3)
1,2,3
[admin@MikroTik] interface> :put (1 . 3,4)
13,4
[admin@MikroTik] interface> :put (1,2 . 3,4)
1,2,3,4
[admin@MikroTik] interface> :put ((1 . 3) + 1)
ERROR: cannot add string to integer number
[admin@MikroTik] interface>

Data types

Description

The console can work with several data types. Currently it distinguishes between strings, boolean values, numbers, time intervals, IP addresses, internal numbers and lists. Currently console tries to convert any value to the most specific type first, backing up if it fails. This is the order in which console attempts to convert a value:

- list
- internal number
- number
- IP address
- time
- boolean
- string

There is no way to explicitly control this type conversion.

In console integers are internally represented as 64 bit signed numbers, so the range of variable values can be from -9223372036854775808 to 9223372036854775807. It is possible to input them as hexadecimal numbers, by prefixing with 0x.

Lists are written as comma separated sequence of values. Putting whitespaces around commas is not recommended, because it might confuse console about word boundaries.

Boolean values are written as either true or false. Console also accepts yes for true, and no for false.

Internal numbers begin with *.

Time intervals are written as sequence of numbers, that can be followed by letters specifying the units of time measure. The default is a second. Numbers may have decimal point. It is also possible to use the HH:MM:SS notation. Accepted time units:

- d, day, days - one day, id est 24 hours
• **h, hour, hours** - one hour
• **m, min** - one minute
• **s** - one second
• **ms** - one millisecond, id est 0.001 second

**Internal Console Expressions (ICE)**

**Description**

Within this document, ICE refers to console's built-in commands and expressions those do not depend on the current menu level.

These commands do not change configuration directly, but they are useful for automating various maintenance tasks. The full ICE list can be accessed by typing '?' after the ':' prefix.

**Command Description**

**beep** - this action forces the built-in beeper to beep a signal for length seconds at frequency Hz.

```
[admin@MikroTik] > :beep length=2s frequency=10000
[admin@MikroTik] >
```

**delay** - this action does nothing for a given amount of time. It takes one argument, an amount of time to wait, which defaults to one second.

**do** - this action takes one argument, which holds the console commands that must be executed. It is similar to the do statement of other commands. It has also two parameters, while and if. If no parameters are given, do just executes its payload once, which does not make much use. However if you specify a condition as a value for the while argument, it will be evaluated after executing commands, and if it will return true, do statement is executed again and again until false. If you specify a condition for the if argument, it is evaluated only once before doing anything else, and if it is false, nothing is done.

```
[admin@MikroTik] > {:global i; :set i 10; :do{:put $i; :decr i;} \`
``` `...` `while` `((i < 10) && (i > 0)); :unset i;}`
```
10
9
8
7
6
5
4
3
2
1
[admin@MikroTik] >
```

**environment print** - this action prints information about variables. All global variables in the system are listed under the heading Global Variables. All variables that are introduced in this script (local variables introduced by :local or created by :for or :foreach statements, global variables introduced by :global, in short, all variables that can be used within the current script) are listed under the heading Local Variables.

```
[admin@MikroTik] > :environment print
Global Variables
```

Copyright 1999-2005, MikroTik. All rights reserved. Mikrotik, RouterOS and RouterBOARD are trademarks of Mikrotikls SIA. Other trademarks and registered trademarks mentioned herein are properties of their respective owners.
Local Variables

g1 = this is a global variable
l1 = this is a local variable
counter = 2

[admin@MikroTik] >

for - this action takes one argument, the name of the loop variable. It has also four parameters, from, to, step and do. First two parameters indicate the borders for the loop counter. The interval includes these two values as well. The third one specifies the step of decrement (or increment). And, finally, the do statement holds console commands to repeat.

[admin@MikroTik] > :for i from=1 to=100 step=37 do={:put ($i . " - " . 1000/$i)}
1 - 1000
38 - 26
75 - 13

[admin@MikroTik] >

foreach - this action takes one argument, the name of the loop variable. It has also two parameters, in and do. The in argument is treated as a list with each value assigned to the loop variable, and do statement executed for this value. If in value is not a list then do statement is executed only once. In case in value is empty, do statement is not executed at all. This way it is optimized to work with find command, which returns lists of internal numbers, and may return an empty list or just one internal number. This example prints all ethernet interfaces, each followed by all addresses that are assigned to it:

[admin@MikroTik] > :foreach i in=[/interface find type=ether ] do={
{|... :put [/interface get $i name|{|...
{|... :foreach j in=[/ip address find interface=$i ] do=
{|{{... :put [/ip address get $j address|{{... }
{|{{... }
ether1
ether2
10.0.0.65/24

[admin@MikroTik] >

if - this action takes one argument, a logical condition, i.e., an expression which must return a boolean value. It has also two parameters, do and else. If the logical condition is evaluated to true then the part after the do parameter is executed, otherwise the else part takes place. Note, that else part is optional.

[admin@MikroTik] > :if (yes) do={:put yes} else={:put no}
true
[admin@MikroTik] > :if ([/ping 10.0.0.1 count=1 ] = 0) do={:put "gw unreachable"}
10.0.0.1 pong timeout
1 packets transmitted, 0 packets received, 100% packet loss
gw [admin@MikroTik] >

log - this action adds an entry to the system logs. It has two parameters, message which contains the string needed to be added and facility which, in turn, specifies by which logging facility the message should be logged. The facility parameter defaults to System-Info

[admin@MikroTik] > :log facility=Firewall-Log message="Very Good \ 
... Thing happened. We have received our first packet!"

[admin@MikroTik] >

put - this action takes one argument, which it echoes to console.

resolve - this action takes one argument, a DNS name and resolves it to the IP address of the host. You have to configure DNS settings on the router (/ip dns submenu) prior to using this action.

[admin@MikroTik] ip route> /ip dns set primary-dns=159.148.60.2
[admin@MikroTik] ip route> :put [:resolve www.example.com]
192.0.34.166
**time** - this action calculates the amount of time needed to execute given console commands. It takes one argument, which holds console commands the time action should be applied to. The commands are executed once and the total amount of time taken is returned.

```
[admin@MikroTik] > :put [:time {:delay}]
1s34.31ms
[admin@MikroTik] >
```

**while** - this action takes one argument, a logical condition, i.e. an expression which must return a boolean value. It has also one parameter, `do`. The logical condition is evaluated every time before executing `do` statement.

```
[admin@MikroTik] > (:global i; :set i 0; :while ($i < 10) \
\... do={:put $i; :incr i;}; :unset i;)
0
1
2
3
4
5
6
7
8
9
[admin@MikroTik] >
```

### Special Actions

#### Description

**Monitor**

It is possible to access values that are shown by most **monitor** actions from scripts. If **monitor** action has `do` argument, it can be supplied either script name (see `/system scripts`), or console commands.

**Get**

It is also possible to access from scripts values that are shown by most **print** actions. Most command levels that have **print** action, also have **get** action. It has one or two arguments. If this command level's **get** action deals with a list of items, the first argument is a name or an internal number of an item. The second argument is a name of item's property which should be returned.

#### Notes

Monitor action with `do` argument can also be called directly from scripts. It will not print anything then, just execute the given script.

Names of properties that can be accessed by **get** are the same as shown by **print** action, plus names of item flags (like the disabled in the example below). You can use [tab] key completions to see what properties any particular **get** action can return.

#### Example
In the example below the `monitor` action will execute given script each time it prints stats on the screen, and it will assign all printed values to local variables with the same name:

```
[admin@MikroTik] interface> monitor-traffic ether2 once do={:environment print}
 received-packets-per-second: 0
 received-bits-per-second: 0bps
 sent-packets-per-second: 0
 sent-bits-per-second: 0bps
```

Global Variables

- `i=1`

Local Variables

- `sent-bits-per-second=0`
- `received-packets-per-second=0`
- `received-bits-per-second=0`
- `sent-packets-per-second=0`

[admin@MikroTik] interface>

### Additional Features

#### Description

It is possible to include comments in console scripts. If script line starts with `#`, all characters until new line are ignored.

It is possible to put multiple commands on a single line, separating them by `;`. Console treats `;` as end of line when separating script text into commands.

If you want to use any of `{ }"\` characters in a string, you have to prefix them with `\` character. Console takes any character following `\` literally, without assigning any special meaning to it, except for such cases:

```
\a bell (alarm), character code 7
\b backspace, character code 8
\f form feed, character code 12
\n newline, character code 10
\r carriage return, character code 13
\t tabulation, character code 9
\v vertical tabulation, character code 11
_ space, character code 32
```

**Note** that `\`, followed by any amount of whitespace characters (spaces, newlines, carriage returns, tabulations), followed by newline is treated as a single whitespace, except inside quotes, where it is treated as nothing. This is used by console to break up long lines in scripts generated by export commands.

### Scripts

**Home menu level:** `/system script`

#### Description

In RouterOS, a script may be started in three different ways:

- according to a specific time or an interval of time
- on an event - for example, if the netwatch tool sees that an address does not respond to pings
- by another script
**Property Description**

last-started (time) - date and time when the script has been last invoked. The argument is shown only if the run-count!=0.

owner (name; default: admin) - the name of the user who created the script

policy (multiple choice: ftp | local | policy | read | reboot | ssh | telnet | test | web | write; default: reboot,read,write,policy,test) - the list of the policies applicable:
  - ftp - user can log on remotely via ftp and send and retrieve files from the router
  - local - user can log on locally via console
  - policy - manage user policies, add and remove user
  - read - user can retrieve the configuration
  - reboot - user can reboot the router
  - ssh - user can log on remotely via secure shell
  - telnet - user can log on remotely via telnet
  - test - user can run ping, traceroute, bandwidth test
  - web - user can log on remotely via http
  - write - user can retrieve and change the configuration

run-count (integer; default: 0) - script usage counter. This counter is incremented each time the script is executed. The counter will reset after reboot.

source (text; default: "") - the script source code itself

**Command Description**

run (name) - executes a given script

**Notes**

You cannot do more in scripts than you are allowed to do by your current user rights, that is, you cannot use disabled policies. For example, if there is a policy group in /user group which allows you ssh,local,telnet,read,write,policy,test,web and this group is assigned to your user name, then you cannot make a script that reboots the router.

**Example**

The following example is a script for writing message "Hello World!" to the system log:

```
[admin@MikroTik] system script> add name=log-test source={:log \
 \... message="Hello World!"}
[admin@MikroTik] system script> print
 0 name="log-test" source=":log message="Hello World!"" owner="admin"
 policy=reboot,read,write,policy,test last-started=dec/06/1999 20:07:37
 run-count=1
```

**Task Management**
Home menu level: `/system script job`

**Description**

This facility is used to manage the active or scheduled tasks.

**Property Description**

- **name** (read-only: `name`) - the name of the script to be referenced when invoking it
- **owner** (text) - the name of the user who created the script
- **source** (read-only: `text`) - the script source code itself

**Example**

```bash
[admin@MikroTik] system script> job print
SCRIPT - OWNER STARTED
0 Delayed admin dec/27/2003 11:17:33
[admin@MikroTik] system script>
```

You can cancel execution of a script by removing it from the job list

```bash
[admin@MikroTik] system script> job remove 0
[admin@MikroTik] system script> job print
[admin@MikroTik] system script>
```

**Script Editor**

**Command name: `/system script edit`**

**Description**

RouterOS console has a simple full-screen editor for scripts with support for multiline script writing.

**Keyboard Shortcuts**

- **Delete** - deletes character at cursor position
- **Ctrl+h, backspase** - deletes character before cursor. Unindents line
- **Tab** - indents line
- **Ctrl+b, LeftArrow** - moves cursor left
- **Ctrl+f, RightArrow** - moves cursor right
- **Ctrl+p, UpArrow** - moves cursor up
- **Ctrl+n, DownArrow** - moves cursor down
- **Ctrl+a, Home** - moves cursor to the beginning of line or script
- **Ctrl+e, End** - moves cursor to the end of line or script
- **Ctrl+y** - inserts contents of buffer at cursor position
- **Ctrl+k** - deletes characters from cursor position to the end of line
• Ctrl+u - undoes last action
• Ctrl+o - exits editor accepting changes
• Ctrl+x - exits editor discarding changes

**Command Description**

*edit ( name )* - opens the script specified by the name argument in full-screen editor

**Notes**

All characters that are deleted by **backspace**, **delete** or **Ctrl+k** keys are accumulated in the buffer. Pressing any other key finishes adding to this buffer (**Ctrl+y** can paste it's contents), and the next delete operation will replace it's contents. Undo doesn't change contents of cut buffer.

Script editor works only on VT102 compatible terminals (terminal names "vt102", "linux", "xterm", "rxvt" are recognized as VT102 at the moment). Delete, backspace and cursor keys might not work with all terminal programs, use 'Ctrl' alternatives in such cases.

**Example**

The following example shows the script editor window with a sample script open:

This script is used for writing message "hello" and 3 messages "kuku" to the system log.

**System Scheduler**

**Specifications**

Packages required: **system**
License required: **level1**
Home menu level: **/system scheduler**
Standards and Technologies: **none**
Hardware usage: **Not significant**

**Description**

System scheduler provides a way to execute scripts at designated time.

**Property Description**

**interval ( time ; default: 0s )** - interval between two script executions, if time interval is set to zero, the script is only executed at its start time, otherwise it is executed repeatedly at the time interval is specified

**name ( name )** - name of the task

**on-event ( name )** - name of the script to execute. It must be presented at /system script

**run-count ( read-only: integer )** - to monitor script usage, this counter is incremented each time the script is executed
**Notes**

Rebooting the router will reset run-count counter.

If more than one script has to be executed simultaneously, they are executed in the order they appear in the scheduler configuration. This can be important if one scheduled script is used to disable another one. The order of scripts can be changed with the move command.

If a more complex execution pattern is needed, it can usually be done by scheduling several scripts, and making them enable and disable each other.

**Example**

We will add a task that executes the script log-test every hour:

```bash
[admin@MikroTik] system script> add name=log-test source=:log message=test
[admin@MikroTik] system script> print
 0 name="log-test" source=":log message=test" owner=admin run-count=0
[admin@MikroTik] system scheduler> add name=run-1h interval=1h on-event=log-test
[admin@MikroTik] system scheduler> print
Flags: X - disabled
 0 run-1h log-test mar/30/2004 06:11:35 1h 0
[admin@MikroTik] system scheduler> ...
```

In another example there will be two scripts added that will change the bandwidth setting of a queue rule "Cust0". Every day at 9AM the queue will be set to 64Kb/s and at 5PM the queue will be set to 128Kb/s. The queue rule, the scripts, and the scheduler tasks are below:

```bash
[admin@MikroTik] queue simple> add name=Cust0 interface=ether1 \... dst-address=192.168.0.0/24 limit-at=64000
[admin@MikroTik] queue simple> print
 0 name="Cust0" target-address=0.0.0.0/0 dst-address=192.168.0.0/24 \... interface=ether1 limit-at=64000 queue=default priority=8 bounded=yes
[admin@MikroTik] queue simple> /system script
[admin@MikroTik] system script> add name=start_limit source={/queue simple set \... Cust0 limit-at=64000}
[admin@MikroTik] system script> add name=stop_limit source={/queue simple set \... Cust0 limit-at=128000}
[admin@MikroTik] system scheduler> print
 0 name="start_limit" source="/queue simple set Cust0 limit-at=64000" \... owner=admin run-count=0
 1 name="stop_limit" source="/queue simple set Cust0 limit-at=128000" \... owner=admin run-count=0
[admin@MikroTik] system scheduler> ...
```

---

**start-date** (*date*) - date of the first script execution

**start-time** (*time*) - time of the first script execution
The following example schedules a script that sends each week a backup of router configuration by e-mail.

```
[admin@MikroTik] system script> add name=e-backup source={/system backup
{... identity get name} . "Backup") file=email.backup
[admin@MikroTik] system script> print
 0 name="e-backup" source="/system backup save name=ema...
run-count=0

[admin@MikroTik] system script> .. scheduler
[admin@MikroTik] system scheduler> add interval=7d name="email-backup"
\... on-event=e-backup
[admin@MikroTik] system scheduler> print
Flags: X - disabled
NAME ON-EVENT START-DATE START-TIME INTERVAL RUN-COUNT
 0 email-... e-backup oct/30/2008 15:19:28 7d 1
[admin@MikroTik] system scheduler>
```

Do not forget to set the e-mail settings, i.e., the SMTP server and From: address under `/tool e-mail`. For example:

```
[admin@MikroTik] tool e-mail> set server=159.148.147.198 from=SysAdmin@host.com
[admin@MikroTik] tool e-mail> print
 server: 159.148.147.198
 from: SysAdmin@host.com
[admin@MikroTik] tool e-mail>
```

Example below will put 'x' in logs each hour from midnight till noon:

```
[admin@MikroTik] system script> add name=enable-x source={/system scheduler
{... enable x}
[admin@MikroTik] system script> add name=disable-x source={/system scheduler
{... disable x}
[admin@MikroTik] system script> add name=log-x source={:log message=x}
[admin@MikroTik] system script> .. scheduler
[admin@MikroTik] system scheduler> add name=x-up start-time=00:00:00
\... interval=24h on-event=enable-x
[admin@MikroTik] system scheduler> add name=x-down start-time=12:00:00
\... interval=24h on-event=disable-x
[admin@MikroTik] system scheduler> add name=x start-time=00:00:00 interval=1h
\... on-event=log-x
[admin@MikroTik] system scheduler> print
Flags: X - disabled
NAME ON-EVENT START-DATE START-TIME INTERVAL RUN-COUNT
 0 x-up enable-x oct/30/2008 00:00:00 1d 0
 1 x-down disab... oct/30/2008 12:00:00 1d 0
 2 x log-x oct/30/2008 00:00:00 1h 0
[admin@MikroTik] system scheduler>
```

**Network Watching Tool**

**Specifications**

Packages required: *advanced-tools*
License required: *level1*
Home menu level: */tool netwatch*
Standards and Technologies: *none*
Hardware usage: *Not significant*

**Description**

Netwatch monitors state of hosts on the network. It does so by sending ICMP pings to the list of
specified IP addresses. For each entry in netwatch table you can specify IP address, ping interval and console scripts. The main advantage of netwatch is its ability to issue arbitrary console commands on host state changes.

**Property Description**

**down-script (name)** - a console script that is executed once when state of a host changes from unknown or up to down

**host (IP address; default: 0.0.0.0)** - IP address of host that should be monitored

**interval (time; default: 1s)** - the time between pings. Lowering this will make state changes more responsive, but can create unnecessary traffic and consume system resources

**since (read-only: time)** - indicates when state of the host changed last time

**status (read-only: up | down | unknown)** - shows the current status of the host

- **up** - the host is up
- **down** - the host is down
- **unknown** - after any properties of this list entry were changed, or the item is enabled or disabled

**timeout (time; default: 1s)** - timeout for each ping. If no reply from a host is received during this time, the host is considered unreachable (down)

**up-script (name)** - a console script that is executed once when state of a host changes from unknown or down to up

**Example**

This example will run the scripts gw_1 or gw_2 which change the default gateway depending on the status of one of the gateways:

```
[admin@MikroTik] system script> add name=gw_1 source={/ip route set {... [/ip route find dst 0.0.0.0] gateway 10.0.0.1}
[admin@MikroTik] system script> add name=gw_2 source={/ip route set {.. [/ip route find dst 0.0.0.0] gateway 10.0.0.217}
[admin@MikroTik] system script> /tool netwatch
[admin@MikroTik] tool netwatch> add host=10.0.0.217 interval=10s timeout=998ms up-script=gw_2 down-script=gw_1
[admin@MikroTik] tool netwatch> print
Flags: X - disabled
HOST TIME OUT INTERVAL STATUS
0 10.0.0.217 997ms 10s up
[admin@MikroTik] tool netwatch> print detail
Flags: X - disabled
0 host=10.0.0.217 timeout=997ms interval=10s since=feb/27/2003 14:01:03
status=up up-script=gw_2 down-script=gw_1
```

Without scripts, netwatch can be used just as an information tool to see which links are up, or which specific hosts are running at the moment.

Let's look at the example above - it changes default route if gateway becomes unreachable. How it's done? There are two scripts. The script "gw_2" is executed once when status of host changes to up.

In our case, it's equivalent to entering this console command:

```
[admin@MikroTik] > /ip route set [/ip route find dst 0.0.0.0] gateway 10.0.0.217
```
The `/ip route find dst 0.0.0.0` command returns list of all routes whose `dst-address` value is `0.0.0.0`. Usually, that is the default route. It is substituted as first argument to `/ip route set` command, which changes gateway of this route to 10.0.0.217.

The script "gw_1" is executed once when status of host becomes `down`. It does the following:

```
[admin@MikroTik] > /ip route set [/ip route find dst 0.0.0.0] gateway 10.0.0.1
```
It changes the default gateway if 10.0.0.217 address has become unreachable.

Here is another example, that sends e-mail notification whenever the 10.0.0.215 host goes down:

```
[admin@MikroTik] > /tool netwatch
[admin@MikroTik] > tool netwatch> add host=10.0.0.215 timeout=999ms \
... interval=20s up-script=e-up down-script=e-down
[admin@MikroTik] > tool netwatch> print detail
Flags: X - disabled
0 host=10.0.0.215 timeout=998ms interval=20s since=feb/27/2003 14:15:36
 status=up up-script=e-up down-script=e-down
[admin@MikroTik] > tool netwatch>
```

### Traffic Monitor

#### Specifications

- **Packages required:** *advanced-tools*
- **License required:** *level1*
- **Home menu level:** `/tool traffic-monitor`
- **Standards and Technologies:** *none*
- **Hardware usage:** *Not significant*

#### Description

The traffic monitor tool is used to execute console scripts when interface traffic crosses a given threshold. Each item in traffic monitor list consists of its name (which is useful if you want to disable or change properties of this item from another script), some parameters, specifying traffic condition, and the pointer to a script or scheduled event to execute when this condition is met.

#### Property Description

- **interface ( name )** - interface to monitor
- **name ( name )** - name of the traffic monitor item
- **on-event ( name )** - script source. Must be present under `/system script`
- **threshold ( integer ; default: 0 )** - traffic threshold
- **traffic ( transmitted | received ; default: transmitted )** - type of traffic to monitor
  - **transmitted** - transmitted traffic
• **received** - received traffic

**trigger** ( **above** | **always** | **below** ; default: **above** ) - condition on which to execute the script
- **above** - the script will be run each time the traffic exceeds the threshold
- **always** - triggers scripts on both - above and below condition
- **below** - triggers script in the opposite condition, when traffic reaches a value that is lower than the threshold

**Example**

In this example the traffic monitor enables the interface ether2, if the received traffic exceeds 15kbps on ether1, and disables the interface ether2, if the received traffic falls below 12kbps on ether1.

```
[admin@MikroTik] system script> add name=eth-up source={/interface enable ether2}
[admin@MikroTik] system script> add name=eth-down source={/interface disable ether2}
[admin@MikroTik] system script> /tool traffic-monitor
[admin@MikroTik] tool traffic-monitor> add name=turn_on interface=ether1 on-event=eth-up threshold=15000 trigger=above traffic=received
[admin@MikroTik] tool traffic-monitor> add name=turn_off interface=ether1 on-event=eth-down threshold=12000 trigger=below traffic=received
[admin@MikroTik] tool traffic-monitor> print
Flags: X - disabled, I - invalid
 # NAME INTERFACE TRAFFIC TRIGGER THRESHOLD ON-EVENT
 0 turn_on ether1 received above 15000 eth-up
 1 turn_off ether1 received below 12000 eth-down
```

**Sigwatch**

**Specifications**

- Packages required: **advanced-tools**
- License required: **level1**
- Home menu level: `/tool sigwatch`
- Standards and Technologies: **none**
- Hardware usage: **Not significant**

**Description**

Sigwatch can be used to monitor the state of serial port pins.

**Property Description**

- **count** ( **read-only**: integer ) - how many times the event for this item was triggered. Count is reset on reboot and on most item configuration changes
- **log** ( | yes | no ; default: no ) - whether to add a message in form of name-of-sigwatch-item: signal changed [to high | to low] to System-Info facility whenever this sigwatch item is triggered
- **name** ( name ) - name of the sigwatch item
- on-condition ( **on** | **off** | **change** ; default: **on** ) - on what condition to trigger action of this item
  - **on** - trigger when state of pin changes to high
• **off** - trigger when state of pin changes to low
• **change** - trigger whenever state of pin changes. If state of pin changes rapidly, there might be triggered only one action for several state changes

**port ( name )** - serial port name to monitor

**script ( name )** - script to execute when this item is triggered

**signal ( dtr | rts | cts | dcd | ri | dsr ; default: rts )** - name of signal of number of pin (for standard 9-pin connector) to monitor

• **dtr** - Data Terminal Ready (pin #4)
• **rts** - Request To Send (pin #7)
• **cts** - Clear To Send (pin #8)
• **dcd** - Data Carrier Detect (pin #1)
• **ri** - Ring Indicator (pin #9)
• **dsr** - Data Set Ready (pin #6)

**state ( read-only: text )** - last remembered state of monitored signal

### Notes

You can type actual script source instead of the script name from `/system script` list.

### Example

In the following example we will add a new sigwatch item that monitors whether the port *serial1* has cts signal.

```
[admin@10.179] tool sigwatch> pr
Flags: X - disabled
NAME PORT SIGNAL ON-CONDITION LOG
0 test serial1 cts change no
[admin@MikroTik] tool sigwatch>
```

By typing a command `print detail interval=1s`, we can check whether a cable is connected or it is not. See the **state** argument - if the cable is connected to the serial port, it shows **on**, otherwise it will be **off**.

```
[admin@MikroTik] tool sigwatch> print detail
Flags: X - disabled
 0 name="test." port=serial1 signal=cts on-condition=change log=no script=""
 count=1 state=on

[admin@MikroTik] tool sigwatch> print detail
Flags: X - disabled
 0 name="test." port=serial1 signal=cts on-condition=change log=no script=""
 count=1 state=on

[admin@MikroTik] tool sigwatch> print detail
Flags: X - disabled
 0 name="test." port=serial1 signal=cts on-condition=change log=no script=""
 count=2 state=off

[admin@MikroTik] tool sigwatch> print detail
Flags: X - disabled
 0 name="test." port=serial1 signal=cts on-condition=change log=no script=""
 count=2 state=off

[admin@MikroTik] tool sigwatch>
```
In the port menu you can see what signal is used by serial cable. For example, without any cables it looks like this:

```
[admin@MikroTik] port> print stats
 0 name="serial0" line-state=dtr,rts
 1 name="serial1" line-state=dtr,rts
[admin@MikroTik] port>
```

But after adding a serial cable to the serial port:

```
[admin@MikroTik] port> print stats
 0 name="serial0" line-state=dtr,rts
 1 name="serial1" line-state=dtr,rts,cts
[admin@MikroTik] port>
```

This means that the line-state besides the dtr and rts signals has also cts when a serial cable is connected.

The example below will execute a script whenever on-condition changes to off:

```
[admin@10.MikroTik] tool sigwatch> pr detail
 Flags: X = disabled
 0 name="cts_rest" port=serial1 signal=cts on-condition=off log=no
 script=/system shutdown count=0 state=on
[admin@10.MikroTik] tool sigwatch>
```

It means that if a serial cable is connected to the serial port, all works fine, but as soon as it is disconnected, the router shuts down. It will continue all the time until the serial cable will not be connected again.
IP Telephony

Document revision 2.2 (Mon Apr 26 12:53:19 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
  Summary
  Specifications
  Related Documents
  Description
  Notes
  Additional Documents

General Voice port settings
  Description
  Property Description
  Notes

Voicetronix Voice Ports
  Property Description
  Command Description
  Notes

LineJack Voice Ports
  Property Description
  Command Description
  Notes

PhoneJack Voice Ports
  Property Description
  Command Description

Zaptel Voice Ports
  Property Description
  Command Description

ISDN Voice Ports
  Property Description
  Command Description
  Notes

Voice Port for Voice over IP (voip)
  Description
  Property Description
  Numbers
  Description
  Property Description
  Notes
  Example
  Regional Settings
  Description
  Property Description
  Notes
General Information

Summary

The MikroTik RouterOS IP Telephony feature enables Voice over IP (VoIP) communications using routers equipped with the following voice port hardware:

- Quicknet LineJACK or PhoneJACK analog telephony cards
- ISDN cards
- Voicetronix OpenLine4 (was V4PCI) - 4 analog telephone lines cards
- Zaptel Wildcard X100P IP telephony card - 1 analog telephone line

Specifications

Packages required: **telephony**
License required: **level2**
Home menu level: /ip telephony
Standards and Technologies: **RTP**
Hardware usage: Pentium MMX level processor recommended

Related Documents

- **Package Management**
- **ISDN**
- **AAA**
IP telephony, known as Voice over IP (VoIP), is the transmission of telephone calls over a data network like one of the many networks that make up the Internet. There are four ways that you might talk to someone using VoIP:

- Computer-to-computer - This is certainly the easiest way to use VoIP, and you don't have to pay for long-distance calls.
- Computer-to-telephone - This method allows you to call anyone (who has a phone) from your computer. Like computer-to-computer calling, it requires a software client. The software is typically free, but the calls may have a small per-minute charge.
- Telephone-to-computer - Allows a standard telephone user to initiate a call to a computer user.
- Telephone-to-telephone - Through the use of gateways, you can connect directly with any other standard telephone in the world.

Supported hardware:

- **Quicknet Technologies** cards:
  - Internet PhoneJACK (ISA or PCI) for connecting an analog telephone (FXS port)
  - Internet LineJACK (ISA) for connecting an analog telephone line (FXO port) or a telephone (FXS port)
- ISDN client cards (PCI) for connecting an ISDN line. See [Device Driver List](#) for the list of supported PCI ISDN cards
- **Voicetronix** OpenLine4 card for connecting four (4) analog telephone lines (FXO ports)
- Zaptel Wildcard X100P IP telephony card (from [Linux Support Services](#)) for connecting one analog telephone line (FXO port)

Supported standards:

- MikroTik RouterOS supports IP Telephony in compliance with the International Telecommunications Union - Telecommunications (ITU-T) specification H.323v4. H.323 is a specification for transmitting multimedia (voice, video, and data) across an IP network. H.323v4 includes: H.245, H.225, Q.931, H.450.1, RTP(real-time protocol)
- The following audio codecs are supported: **G.711** (the 64 kbps Pulse code modulation (PCM) voice coding), **G.723.1** (the 6.3 kbps compression technique that can be used for compressing audio signal at very low bit rate), **GSM-06.10** (the 13.2 kbps coding), **LPC-10** (the 2.5 kbps coding), **G.729** and **G.729a** (the 8 kbps CS-ACELP software coding), **G.728** (16 kbps coding technique, supported only on Quicknet LineJACK cards)

In PSTN lines there is a known delay of the signal caused by switching and signal compressing devices of the telephone network (so, it depends on the distance between the peers), which is generally rather low. The delay is also present in IP networks. The main difference between a PSTN and an IP network is that in IP networks that delay is more random. The actual packet delay may vary in order of magnitude in congested networks (if a network becomes congested, some packets may even be lost). Also packet reordering may take place. To prevent signal loss, caused by random jitter of IP networks and packet reordering, to corrupt audio signal, a jitter buffer is present in IP telephony devices. The jitter buffer is delaying the actual playback of a received packet forming...
The larger the jitter buffer, the larger the total delay, but fewer packets get lost due to timeout.

The total delay from the moment of recording the voice signal till its playback is the sum of following three delay times:

- delay time at the recording point (approx. 38ms)
- delay time of the IP network (1..5ms and up)
- delay time at the playback point (the jitter delay)

**Notes**

Each installed Quicknet card requires IO memory range in the following sequence: the first card occupies addresses 0x300-0x31f, the second card 0x320-0x33f, the third 0x340-0x35f, and so on. Make sure there is no conflict in these ranges with other devices, e.g., network interface cards, etc.

Use the telephony logging feature to debug your setup.

**Additional Documents**

**General Voice port settings**

Home menu level: `/ip telephony voice-port`

**Description**

This submenu is used for managing all IP telephony voice ports (linejack, phonejack, isdn, voip, voicetronix, zaptel)

**Property Description**

- **name** ( `name` ) - assigned name of the voice port
- **type** ( `read-only: phonejack | linejack | phonejack-lite | phonejack-pci | voip | isdn | voicetronix | zaptel` ) - type of the installed telephony voice port:
  - **phonejack** - Quicknet PhoneJACK (ISA)
  - **linejack** - Quicknet LineJACK (ISA)
  - **phonejack-lite** - Quicknet PhoneJACK Lite Linux Edition (ISA)
  - **phonejack-pci** - Quicknet PhoneJACK (PCI)
  - **voip** - generic Voice over IP port
  - **isdn** - ISDN cards
  - **voicetronix** - Voicetronix OpenLine4
  - **zaptel** - Zaptel Wildcard X100P
- **autodial** ( `integer` ; default: `""` ) - number to be dialed automatically, if call is coming in from this voice port

**Notes**
If `autodial` does not exactly match an item in `/ip telephony numbers`, there can be two possibilities:

- if `autodial` is incomplete, rest of the number is asked (local voice port) or incoming call is denied (VoIP)
- if `autodial` is invalid, line is hung up (PSTN line), busy tone is played (POTS) or incoming call is denied (VoIP)

**Voicetronix Voice Ports**

Home menu level: `/ip telephony voice-port voicetronix`

**Property Description**

`name` *(name)* - name given by the user or the default one

`autodial` *(integer)*; default: ""
- phone number which will be dialed immediately after the handset has been lifted. If this number is incomplete, then the remaining part has to be dialed on the dial-pad. If the number is incorrect, the line is hung up. If the number is correct, then the appropriate number is dialed (the direct-call mode is used - the line is picked up only after the remote party answers the call)

`playback-volume` *(integer: -48 ..48)*; default: 0
- playback volume in dB
  - 0 - 0dB means no change to signal level

`record-volume` *(integer: -48 ..48)*; default: 0
- record volume in dB
  - 0 - 0dB means no change to signal level

`region` *(name)*; default: us
- regional setting for the voice port. This setting is used for setting the parameters of PSTN line, as well as for detecting and generating the tones

`agc-on-playback` *(yes | no)*; default: no
- automatic gain control on playback (can not be used together with hardware voice codecs)

`agc-on-record` *(yes | no)*; default: no
- automatic gain control on record (can not be used together with hardware voice codecs)

`detect-cpt` *(yes | no)*; default: no
- automatically detect call progress tones

`balance-registers` *(integer: 0 ..255)*; default: 199
- registers which depend on telephone line impedance. Can be adjusted to get best echo cancellation. Should be changed only if echo cancellation on voicetronix card does not work good enough. Echo cancellation problems can imply DTMF and busy-tone detection failures. The value has to be in format bal1[,bal3[,bal2]], where bal1, bal2, bal3 - balance registers. bal1 has to be in interval 192..248 (0xC0..0xF8). The others should be in interval 0..255 (0x00..0xFF)

`balance-status` *(read-only: integer)*; default: unknown
- shows quality of hardware echo cancellation in dB

`loop-drop-detection` *(yes | no)*; default: yes
- automatically clear call when loop drop is detected

**Command Description**

`test-balance` - current balance-registers value is tested once. Result is placed in balance-status parameter. Balance can be tested only when line is off-hook. It won't work if line is on-hook or there is an established connection *(name)* - port name to test balance of
**find-best-balance** - series of test-balance is executed with different balance-registers values. During the tests balance-registers are updated to the best values found (name) - port name to find best balance of

**clear-call** - terminate a current call established with the specified voice port (name) - port name to clear call with

**show-stats** - show voice port statistics (name) - port name show statistics of (time) - maximal time of packet round trip (integer) - number of packets sent by this card (these packets are digitalized input of the voice port) (integer) - number of bytes sent by this card (these packets are digitalized input of the voice port) (text) - minimal/average/maximal intervals between packets sent (integer) - number of packets received by this card (these packets form analog output of the voice port) (integer) - number of bytes received by this card (these packets form analog output of the voice port) (text) - minimal/average/maximal intervals between packets received (time) - approximate delay time from the moment of receiving an audio packet from the IP network till it is played back over the telephony voice port. The value shown is never less than 30ms, although the actual delay time could be less. If the shown value is >40ms, then it is close (+/-1ms) to the actual delay time.

**monitor** - monitor status of the voice port (name) - port name to monitor (on-hook | off-hook | ring | connection | busy) - current state of the port:
- on-hook - the handset is on-hook, no activity
- off-hook - the handset is off-hook, the number is being dialed
- ring - call in progress, direction of the call is shown by the direction property
- connection - the connection has been established
- busy - the connection has been terminated, the handset is still off-hook

(ip-to-port | port-to-ip) - direction of the call
- ip-to-port - call from the IP network to the voice card
- port-to-ip - call from the voice card to an IPv4 address

(integer) - the phone number being dialed (text) - name and IP address of the remote party (name) - CODEC used for the audio connection (time) - duration of the phone call

**Notes**

As some Voicetronix cards fail to detect loop drop correctly, with **loop-drop-detection** you can manage whether loop drop detection feature is enabled. The effect of not working loop-drop detection is call terminated at once when connection is established.

Some tips for testing balance registers:
- test is sensitive to noise from the phone, so it's recommended to cover mouth piece during it;
- **find-best-balance** can be interrupted by **clear-call** command;
- once best **balance-registers** value is known, it can be set manually to this best value for all voicetronix voice ports, which will use the same telephone line.

**LineJack Voice Ports**

Home menu level: `/ip telephony voice-port linejack`
Property Description

**name**  
(name) - name given by the user or the default one

**autodial**  
(integer; default: "") - phone number which will be dialed immediately after the handset has been lifted. If this number is incomplete, then the remaining part has to be dialed on the dial-pad. If the number is incorrect, the line is hung up (FXO "line" port) or busy tone is played (FXS "phone" port). If the number is correct, then the appropriate number is dialed. If it is an incoming call from the PSTN line, then the direct-call mode is used - the line is picked up only after the remote party answers the call

**playback-volume**  
(integer: -48 ..48; default: 0) - playback volume in dB

- 0 - 0dB means no change to signal level

**record-volume**  
(integer: -48 ..48; default: 0) - record volume in dB

- 0 - 0dB means no change to signal level

**ring-cadence**  
(text) - a 16-symbol ring cadence for the phone, each symbol lasts 0.5 seconds, + means ringing, - means no ringing

**region**  
(name; default: us) - regional setting for the voice port. This setting is used for setting the parameters of PSTN line, as well as for detecting and generating the tones

**aec**  
(yes | no) - whether echo detection and cancellation is enabled

**aec-tail-length**  
(short | medium | long; default: short) - size of the buffer of echo detection

**aec-nlp-threshold**  
(off | low | medium | high; default: low) - level of cancellation of silent sounds

**aec-attenuation-scaling**  
(integer: 0 ..10; default: 4) - factor of additional echo attenuation

**aec-attenuation-boost**  
(integer: 0 ..90; default: 0) - level of additional echo attenuation

**software-aec**  
(yes | no) - software echo canceller (experimental, for most of the cards)

**agc-on-playback**  
(yes | no; default: no) - automatic gain control on playback (can not be used together with hardware voice codecs)

**agc-on-record**  
(yes | no; default: no) - automatic gain control on record (can not be used together with hardware voice codecs)

**detect-cpt**  
(yes | no; default: no) - automatically detect call progress tones

Command Description

**blink** - blink the LEDs of the specified voice port for five seconds after it is invoked. This command can be used to locate the respective card from several linejack cards (**name**) - card name to blink the LED of

**clear-call** - terminate a current call established with the specified voice port (**name**) - port name to clear call with

**show-stats** - show voice port statistics (**name**) - port name show statistics of (**time**) - maximal time of packet round trip (**integer**) - number of packets sent by this card (these packets are digitalized input of the voice port) (**integer**) - number of bytes sent by this card (these packets are digitalized input of the voice port) (**text**) - minimal/average/maximal intervals between packets sent (**integer**) - number of packets received by this card (these packets form analog output of the voice port) (**integer**) - number of bytes received by this card (these packets form analog output of the voice port) (**text**) - minimal/average/maximal intervals between packets received (**time**) -
approximate delay time from the moment of receiving an audio packet from the IP network till it is played back over the telephony voice port. The value shown is never less than 30ms, although the actual delay time could be less. If the shown value is >40ms, then it is close (+/-1ms) to the actual delay time.

**monitor** - monitor status of the voice port (name) - port name to monitor (on-hook | off-hook | ring | connection | busy) - current state of the port:
- **on-hook** - the handset is on-hook, no activity
- **off-hook** - the handset is off-hook, the number is being dialed
- **ring** - call in progress, direction of the call is shown by the direction property
- **connection** - the connection has been established
- **busy** - the connection has been terminated, the handset is still off-hook

( phone | line ) - the active port of the card
- **phone** - telephone connected to the card (POTS FXS port)
- **line** - line connected to the card (PSTN FXO port)

(ip-to-port | port-to-ip) - direction of the call
- **ip-to-port** - call from the IP network to the voice card
- **port-to-ip** - call from the voice card to an IP address

(plugged | unplugged) - state of the PSTN line
- **plugged** - the telephone line is connected to the PSTN port of the card
- **unplugged** - there is no working line connected to the PSTN port of the card

(integer) - the phone number being dialed (text) - name and IP address of the remote party (name) - CODEC used for the audio connection (time) - duration of the phone call

**Notes**

When telephone line is connected to the 'line' port, green LED next to the port should be lit in some seconds. If telephone line disappear, the LED next to the 'line' port will change its state to red in an hour or when the line is activated (i.e. when somebody calls to/from it). When telephone line is plugged in the 'phone' port before the router is turned on, red LED next to the port will be lit. WARNING: do not plug telephone line into the 'phone' port when the router is running and green LED next to the port is lit - this might damage the card. The status of the 'phone' port is only detected on system startup.

**PhoneJack Voice Ports**

Home menu level: /ip telephony voice-port phonejack

**Property Description**

**name** (name) - name given by the user or the default one

**type** (read-only: phonejack | phonejack-lite | phonejack-pci) - type of the card

**autodial** (integer; default: "") - phone number which will be dialed immediately after the handset has been lifted. If this number is incomplete, then the remaining part has to be dialed on the dial-pad. If the number is incorrect, busy tone is played. If the number is correct, then the appropriate number is dialed
playback-volume ( integer : -48 .. 48 ; default: 0 ) - playback volume in dB
  • 0 - 0dB mean no change to signal level
record-volume ( integer : -48 .. 48 ; default: 0 ) - record volume in dB
  • 0 - 0dB mean no change to signal level
ring-cadence ( text ) - a 16-symbol ring cadence for the phone, each symbol lasts 0.5 seconds, + means ringing, - means no ringing
region ( name ; default: us ) - regional setting for the voice port. This setting is used for generating the dial tones
aec ( yes | no ) - wheterhe echo detection and cancellation is enabled
aec-tail-length ( short | medium | long ; default: short ) - size of the buffer of echo detection
aec-nlp-threshold ( off | low | medium | high ; default: low ) - level of cancellation of silent sounds
aec-attenuation-scaling ( integer : 0 .. 10 ; default: 4 ) - factor of additional echo attenuation
aec-attenuation-boost ( integer : 0 .. 90 ; default: 0 ) - level of additional echo attenuation
software-aec ( yes | no ) - software echo canceller (experimental, for most of the cards)
age-on-playback ( yes | no ; default: no ) - automatic gain control on playback (can not be used together with hardware voice codecs)
age-on-record ( yes | no ; default: no ) - automatic gain control on record (can not be used together with hardware voice codecs)
detect-cpt ( yes | no ; default: no ) - automatically detect call progress tones

Command Description

clear-call - terminate a current call established with the specified voice port ( name ) - port name to clear call with
show-stats - show voice port statistics ( name ) - port name show statistics of ( time ) - maximal time of packet round trip ( integer ) - number of packets sent by this card (these packets are digitalized input of the voice port) ( integer ) - number of bytes sent by this card (these packets are digitalized input of the voice port) ( text ) - minimal/average/maximal intervals between packets sent ( integer ) - number of packets received by this card (these packets form analog output of the voice port) ( integer ) - number of bytes received by this card (these packets form analog output of the voice port) ( text ) - minimal/average/maximal intervals between packets received ( time ) - approximate delay time from the moment of receiving an audio packet from the IP network till it is played back over the telephony voice port. The value shown is never less than 30ms, although the actual delay time could be less. If the shown value is >40ms, then it is close (+/-1ms) to the actual delay time.
monitor - monitor status of the voice port ( name ) - port name to monitor ( on-hook | off-hook | ring | connection | busy ) - current state of the port:
  • on-hook - the handset is on-hook, no activity
  • off-hook - the handset is off-hook, the number is being dialed
  • ring - call in progress, direction of the call is shown by the direction property
  • connection - the connection has been established
  • busy - the connection has been terminated, the handset is still off-hook
(phone | line) - the active port of the card
• phone - telephone connected to the card (POTS FXS port)
• line - line connected to the card (PSTN FXO port)
(ip-to-port | port-to-ip) - direction of the call
• ip-to-port - call from the IP network to the voice card
• port-to-ip - call from the voice card to an IP address
(plugged | unplugged) - state of the PSTN line
• plugged - the telephone line is connected to the PSTN port of the card
• unplugged - there is no working line connected to the PSTN port of the card
(integer) - the phone number being dialed (text) - name and IP address of the remote party (name) - CODEC used for the audio connection (time) - duration of the phone call

Zaptel Voice Ports

Home menu level: /ip telephony voice-port zaptel

Property Description

name (name) - name given by the user or the default one
autodial (integer; default: "") - phone number which will be dialed immediately after the handset has been lifted. If this number is incomplete, then the remaining part has to be dialed on the dial-pad. If the number is incorrect, the line is hung up. If the number is correct, then the appropriate number is dialed (the direct-call mode is used - the line is picked up only after the remote party answers the call)
playback-volume (integer: -48 ..48; default: 0) - playback volume in dB
  • 0 - 0dB means no change to signal level
record-volume (integer: -48 ..48; default: 0) - record volume in dB
  • 0 - 0dB means no change to signal level
region (name; default: us) - regional setting for the voice port. This setting is used for setting the parameters of PSTN line, as well as for detecting and generating the tones
aec (yes | no) - whether echo detection and cancellation is enabled
aec-tail-length (short | medium | long; default: short) - size of the buffer of echo detection
aec-nlp-threshold (off | low | medium | high; default: low) - level of cancellation of silent sounds
eaec-attenuation-scaling (integer: 0 ..10; default: 4) - factor of additional echo attenuation
neaec-attenuation-boost (integer: 0 ..90; default: 0) - level of additional echo attenuation
software-aec (yes | no) - software echo canceller (experimental, for most of the cards)
age-on-playback (yes | no; default: no) - automatic gain control on playback (can not be used together with hardware voice codecs)
age-on-record (yes | no; default: no) - automatic gain control on record (can not be used together with hardware voice codecs)
detect-cpt (yes | no; default: no) - automatically detect call progress tones

Command Description

clear-call - terminate a current call established with the specified voice port (name) - port name to
clear call with

**show-stats** - show voice port statistics ( *name* ) - port name show statistics of ( *time* ) - maximal time of packet round trip ( *integer* ) - number of packets sent by this card (these packets are digitalized input of the voice port) ( *integer* ) - number of bytes sent by this card (these packets are digitalized input of the voice port) ( *text* ) - minimal/average/maximal intervals between packets sent ( *integer* ) - number of packets received by this card (these packets form analog output of the voice port) ( *integer* ) - number of bytes received by this card (these packets form analog output of the voice port) ( *text* ) - minimal/average/maximal intervals between packets received ( *time* ) - approximate delay time from the moment of receiving an audio packet from the IP network till it is played back over the telephony voice port. The value shown is never less than 30ms, although the actual delay time could be less. If the shown value is >40ms, then it is close (+/-1ms) to the actual delay time.

**monitor** - monitor status of the voice port ( *name* ) - port name to monitor ( *on-hook* | *off-hook* | *ring* | *connection* | *busy* ) - current state of the port:
- *on-hook* - the handset is on-hook, no activity
- *off-hook* - the handset is off-hook, the number is being dialed
- *ring* - call in progress, direction of the call is shown by the direction property
- *connection* - the connection has been established
- *busy* - the connection has been terminated, the handset is still off-hook

( *ip-to-port* | *port-to-ip* ) - direction of the call
- *ip-to-port* - call from the IP network to the voice card
- *port-to-ip* - call from the voice card to an IP address

( *plugged* | *unplugged* ) - state of the PSTN line
- *plugged* - the telephone line is connected to the PSTN port of the card
- *unplugged* - there is no working line connected to the PSTN port of the card

( *integer* ) - the phone number being dialed ( *text* ) - name and IP address of the remote party ( *name* ) - CODEC used for the audio connection ( *time* ) - duration of the phone call

**ISDN Voice Ports**

Home menu level: `/ip telephony voice-port isdn`

**Property Description**

**name** ( *name* ) - name given by the user or the default one

**msn** ( *integer* ) - telephone number of the ISDN voice port (ISDN MSN number)

**lmsn** ( *text* ) - msn pattern to listen on. It determines which calls from the ISDN line this voice port should answer. If left empty, msn is used

**autodial** ( *integer* ; default: `""` ) - phone number which will be dialed immediately on each incoming ISDN call. If this number contains 'm', then it will be replaced by originally called (ISDN) telephone number. If this number is incomplete, then the remaining part has to be dialed by the caller. If the number is incorrect, call is refused. If the number is correct, then the appropriate number is dialed. For that direct-call mode is used - the line is picked up only after the remote party answers the call

**playback-volume** ( *integer* : -48 ..48 ; default: 0 ) - playback volume in dB
• 0 - 0dB meand no change to signal level

**record-volume** ( integer : -48 ..48 ; default: 0 ) - record volume in dB
  • 0 - 0dB meand no change to signal level

**region** ( name ; default: us ) - regional setting for the voice port. This setting is used for setting the parameters of PSTN line, as well as for detecting and generating the tones

**aec** ( yes | no ) - whetheer echo detection and cancellation is enabled

**aec-tail-length** ( short | medium | long ; default: short ) - size of the buffer of echo detection

**software-aec** ( yes | no ) - software echo canceller (experimental, for most of the cards)

**age-on-playback** ( yes | no ; default: no ) - automatic gain control on playback (can not be used together with hardware voice codecs)

**age-on-record** ( yes | no ; default: no ) - automatic gain control on record (can not be used together with hardware voice codecs)

---

**Command Description**

**clear-call** - terminate a current call established with the specified voice port ( name ) - port name to clear call with

**show-stats** - show voice port statistics ( name ) - port name show statistics of ( time ) - maximal time of packet round trip ( integer ) - number of packets sent by this card (these packets are input of the voice port) ( integer ) - number of bytes sent by this card (these packets are input of the voice port) ( text ) - minimal/average/maximal intervals between packets sent ( integer ) - number of packets received by this card (these packets form output of the voice port) ( integer ) - number of bytes received by this card (these packets form output of the voice port) ( text ) - minimal/average/maximal intervals between packets received ( time ) - approximate delay time from the moment of receiving an audio packet from the IP network till it is played back over the telephony voice port. The value shown is never less than 30ms, although the actual delay time could be less. If the shown value is >40ms, then it is close (+/-1ms) to the actual delay time.

**monitor** - monitor status of the voice port ( name ) - port name to monitor ( on-hook | off-hook | ring | connection | busy ) - current state of the port:
  • **on-hook** - the handset is on-hook, no activity
  • **off-hook** - the handset is off-hook, the number is being dialed
  • **ring** - call in progress, direction of the call is shown by the direction property
  • **connection** - the connection has been established
  • **busy** - the connection has been terminated, the handset is still off-hook

  ( ip-to-port | port-to-ip ) - direction of the call
  • **ip-to-port** - call from the IP network to the voice card
  • **port-to-ip** - call from the voice card to an IP address

  ( integer ) - the phone number being dialed ( text ) - name and IP address of the remote party ( name ) - CODEC used for the audio connection ( time ) - duration of the phone call

**Notes**

In contrary to analog voice ports phonejack, linejack, voicetronix, zaptel), which are as many as the number of cards installed, the isdn ports can be added as many as desired.
• ; - separates pattern entries (more than one pattern can be specified this way)
• ? - matches one character
• * - matches zero or more characters
• [ ] - matches any single character from the set in brackets
•[^ ] - matches any single character not from the set in brackets

There is a possibility to enter some special symbols in lmsn property. Meaning of the special symbols:

**Voice Port for Voice over IP (voip)**

**Home menu level:** `/ip telephony voice-port voip`

**Description**

The voip voice ports are virtual ports, which designate a voip channel to another host over the IP network. You must have at least one voip voice port to be able to make calls to other H.323 devices over IP network.

**Property Description**

- **name** (name) - name given by the user or the default one
- **remote-address** (IP address; default: 0.0.0.0) - IP address of the remote party (IP telephone or gateway) associated with this voice port. If the call has to be performed through this voice port, then the specified IP address is called. If there is an incoming call from the specified IP address, then the parameters of this voice port are used. If there is an incoming call from an IP address, which is not specified in any of the voip voice port records, then the default record is used. If there is no default record, then default values are used
  - 0.0.0.0 - the record with this IP address will specify the default values for an incoming call
- **autodial** (integer) - phone number which will be added in front of the telephone number received over the IP network. In most cases it should be blank
- **jitter-buffer** (time: 0 ..1000ms; default: 100ms) - size of the jitter buffer
  - 0 - the size of it is adjusted automatically during the conversation, to keep amount of lost packets under 1%
- **silence-detection** (yes | no; default: no) - whether silence is detected and no audio data is sent over the IP network during the silence period
- **prefered-codec** (name; default: none) - the preferred codec to be used for this voip voice port. If possible, the specified codec will be used
  - none - there is no preferred codec defined for this port, so whichever codec advised by the remote peer will be used (if it is supported)
- **fast-start** (yes | no; default: yes) - allow or disallow the fast start. The fast start allows establishing the audio connection in a shorter time. However, not all H.323 endpoints support this feature. Therefore, it should be turned off, if there are problems to establish telephony connection using the fast start mode

**Numbers**
Description

This is the so-called "routing table" for voice calls. This table assigns numbers to the voice ports. The main function of the numbers routing table is to determine:

- to which voice port route the call
- what number to send over to the remote party

Property Description

dst-pattern (integer) - pattern of the telephone number. Symbol '.' designate any digit, symbol '_.' (only as the last one) designate any symbols (i.e. any number of characters can follow, ended with '# button)

voice-port (name) - voice port to be used when calling the specified telephone number

prefix (integer) - prefix, which will be used to substitute the known part of the dst-pattern, i.e., the part containing digits. The dst-pattern argument is used to determine which voice port to be used, whereas the prefix argument designates the number to dial over the voice port (be sent over to the remote party). If the remote party is an IP telephony gateway, then the number will be used for making the call

Notes

More than one entry can be added with exactly the same dst-pattern. If first one of them is already busy, next one with the same dst-pattern is used. Telephony number entries can be moved, to select desired order.

Example

Let us consider the following example for the number table:

```
[admin@MikroTik] ip telephony numbers> print
Flags: I - invalid, X - disabled, D - dynamic, R - registered
DST-PATTERN VOICE-PORT PREFIX
 0 12345 XX
 1 1111 . YY
 2 22... ZZ 333
 3 ... QQ 55
[admin@MikroTik] ip telephony numbers>
```

We will analyze the Number Received (nr) - number dialed at the telephone, or received over the line, the Voice Port (vp) - voice port to be used for the call, and the Number to Call (nc) - number to be called over the Voice Port.

- If nr=55555, it does not match any of the destination patterns, therefore it is rejected
- If nr=123456, it does not match any of the destination patterns, therefore it is rejected
- If nr=1234, it does not match any of the destination patterns (incomplete for record #0), therefore it is rejected
- If nr=12345, it matches the record #0, therefore number "" is dialed over the voice port XX
• If nr=11111, it matches the record #1, therefore number "1" is dialed over the voice port YY
• If nr=22987, it matches the record #2, therefore number "333987" is dialed over the voice port ZZ
• If nr=22000, it matches the record #2, therefore number "333000" is dialed over the voice port ZZ
• If nr=444, it matches the record #3, therefore number "55444" is dialed over the voice port QQ

Let us add a few more records:

```
[admin@MikroTik] ip telephony numbers> print
Flags: I - invalid, X - disabled, D - dynamic, R - registered
DST-PATTERN VOICE-PORT PREFIX
 0 12345 XX
 1 1111. YY
 2 22... ZZ 333
 3 ... QQ 55
 4 222 KK 44444
 5 3.. LL 553

[admin@MikroTik] ip telephony numbers>
```

• If nr=222 => the best match is the record #4 => nc=44444, vp=KK (note: the 'best match' means that it has the most coinciding digits between the nr and destination pattern).
• If nr=221 => incomplete record #2 => call is rejected
• If nr=321 => the best match is the record #5 => nc=55321, vp=LL
• If nr=421 => matches the record #3 => nc=55421, vp=QQ
• If nr=335 => the best match is the record #5 => nc=55321, vp=LL

Let us add a few more records:

```
[admin@MikroTik] ip telephony numbers> print
Flags: I - invalid, X - disabled, D - dynamic, R - registered
Flags: I - invalid, X - disabled, D - dynamic, R - registered
DST-PATTERN VOICE-PORT PREFIX
 0 12345 XX
 1 1111. YY
 2 22... ZZ 333
 3 ... QQ 55
 4 222 KK 44444
 5 3.. LL 553
 6 33... MM 33
 7 11. NN 7711

[admin@MikroTik] ip telephony numbers>
```

• If nr=335 => incomplete record #6 => the call is rejected. The nr=335 fits perfectly both the record #3 and #5. The #5 is chosen as the 'best match' candidate at the moment. Furthermore, there is record #6, which has two matching digits (more than for #3 or #5). Therefore the #6 is chosen as the 'best match'. However, the record #6 requires five digits, but the nr has only three. Two digits are missing, therefore the number is incomplete. Two additional digits would be needed to be entered on the dialpad. If the number is sent over from the network, it is rejected.
• If nr=325 => matches the record #5 => nc=55325, vp=LL
• If nr=33123 => matches the record #6 => nc=33123, vp=MM
• If nr=123 => incomplete record #0 => call is rejected
• If nr=111 => incomplete record #1 => call is rejected
• If nr=112 => matches the record #7 => nc=77112, vp=NN
• If nr=121 => matches the record #3 => nc=55121, vp=QQ

It is impossible to add the following records:

<table>
<thead>
<tr>
<th>#</th>
<th>DST-PATTERN</th>
<th>VOICE-PORT PREFIX</th>
<th>reason:</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>DD</td>
<td></td>
<td>conflict with record # 1 and # 7</td>
</tr>
<tr>
<td>11..</td>
<td>DD</td>
<td></td>
<td>conflict with record # 7</td>
</tr>
<tr>
<td>111</td>
<td>DD</td>
<td></td>
<td>conflict with record # 1</td>
</tr>
<tr>
<td>22.</td>
<td>DD</td>
<td></td>
<td>conflict with record # 2</td>
</tr>
<tr>
<td>.....</td>
<td>DD</td>
<td></td>
<td>conflict with record # 3</td>
</tr>
</tbody>
</table>

**Regional Settings**

Home menu level: `/ip telephony region`

**Description**

Regional settings are used to adjust the voice port properties to the PSTN system or the PBX. For example, to detect hang-up from line, there has to be correct regional setting (correct busy-tone-frequency and busy-tone-cadence). Without that, detect-cpt parameter the voice port has to be enabled.

**Property Description**

- `name ( name )` - name of the regional setting
- `busy-tone-cadence ( integer : 0 ..30000 ; default: 500,500 )` - busy tone cadence in ms
  - `0` - end of cadence
- `busy-tone-frequency ( integer : 20 ..2000 | integer : -24 ..6 ; default: 440x0 )` - frequency and volume gain of busy tone, Hz x dB
- `data-access-arrangement ( australia | france | germany | japan | uk | us ; default: us )` - ring voltage, impedance setting for line-jack card
- `dial-tone-frequency ( integer : 20 ..2000 | integer : -24 ..6 ; default: 440x0 )` - frequency and volume gain of dial tone, Hz x dB
- `dtmf-tone-cadence ( integer : 0 ..30000 ; default: 180,60 )` - Dual Tone Multi Frequency tone cadence in ms
  - `0` - end of cadence
- `dtmf-tone-volume ( integer : -24 ..6 ; default: -3,-3 )` - Dual Tone Multi Frequency tone volume in dB
- `ring-tone-cadence ( integer : 0 ..30000 ; default: 1000,2000 )` - Ring tone cadence in ms
  - `0` - end of cadence
**Notes**

To generate a tone, frequency and cadence arguments are used. The dialtone always is continuous signal, therefore it does not have the cadence argument. In order to detect dialtone, it should be at least 100ms long.

There are 10 pre-defined regions, which can not be deleted (but may be changed)

**Audio CODECs**

**Description**

CODECs are listed according to their priority of use. The highest priority is at the top. CODECs can be enabled, disabled and moved within the list. When connecting with other H.323 systems, the protocol will negotiate the CODEC which both of them support according to the priority order.

The hardware codecs (/hw) are built-in CODECs supported by some cards.

The choice of the CODEC type is based on the throughput and speed of the network. Better audio quality can be achieved by using CODEC requiring higher network throughput. The highest audio quality can be achieved by using the G.711-uLaw CODEC requiring 64kb/s throughput for each direction of the call. It is used mostly within a LAN. The G.723.1 CODEC is the most popular one to be used for audio connections over the Internet. It requires only 6.3kb/s throughput for each direction of the call.

**Example**

```
[admin@MikroTik] ip telephony codec> print
Flags: X - disabled
NAME
0 G.723.1-6.3k/sw
1 G.728-16k/hw
2 G.711-ALaw-64k/hw
3 G.711-uLaw-64k/hw
4 G.711-uLaw-64k/sw
5 G.711-ALaw-64k/sw
6 G.729A-8k/sw
7 GSM-06.10-13.2k/sw
8 LPC-10-2.5k/sw
9 G.723.1-6.3k/hw
10 G.729-8k/sw
[admin@MikroTik] ip telephony codec>
```

**AAA**

**Description**

**ring-tone-frequency** (integer : 20 ..2000 | integer : -24 ..6 ; default: 440x0) - frequency and volume gain of busy tone, Hz x dB
AAA (Authentication Authorization Accounting) can be used to configure the RADIUS accounting feature.

- **NAS-Identifier** - router name (from /system identity print)
- **NAS-IP-Address** - router's local IP address which the connection was established to (if exist)
- **NAS-Port-Type** - always Async
- **Event-Timestamp** - data and time of the event
- **Acct-Session-Time** - current connection duration (only in INTERIM-UPDATE and STOP records)
- **Acct-Output-Packets** - sent RTP (Real-Time Transport Protocol) packet count (only in INTERIM-UPDATE and STOP records)
- **Acct-Output-Packets** - sent RTP (Real-Time Transport Protocol) packet count (only in INTERIM-UPDATE and STOP records)
- **Acct-Input-Packets** - received RTP (Real-Time Transport Protocol) packet count (only in INTERIM-UPDATE and STOP records)
- **Acct-Output-Octets** - sent byte count (only in INTERIM-UPDATE and STOP records)
- **Acct-Input-Octets** - received byte count (only in INTERIM-UPDATE and STOP records)
- **Acct-Session-Id** - unique session participant ID
- **h323-disconnect-cause** - session disconnect reason (only in STOP records):
- **h323-disconnect-time** - session disconnect time (only in INTERIM-UPDATE and STOP records)
- **h323-connect-time** - session establish time (only in INTERIM-UPDATE and STOP records)
- **h323-gw-id** - name of gateway emitting message (should be equal to NAS-Identifier)
- **h323-call-type** - call leg type (should be VoIP)
- **h323-call-origin** - indicates origin of call relatively to the gateway (answer for calls from IP network, originate - to IP network)
- **h323-setup-time** - call setup time
- **h323-conf-id** - unique session ID
- **h323-remote-address** - the remote address of the session
- **NAS-Port-Id** - voice port ID
- **Acct-Status-Type** - record type (START when session is established; STOP when session is closed; INTERIM-UPDATE (ALIVE)session is alive). The time between the interim-update messages is defined by the interim-update-interval parameter (if it is set to 0s, there will be no such messages)

The contents of the CDR (Call Detail Record) are as follows:

- **0** - Local endpoint application cleared call
- **1** - Local endpoint did not accept call
- **2** - Local endpoint declined to answer call
- **3** - Remote endpoint application cleared call
- **4** - Remote endpoint refused call
- **5** - Remote endpoint did not answer in required time
• 6 - Remote endpoint stopped calling
• 7 - Transport error cleared call
• 8 - Transport connection failed to establish call
• 9 - Gatekeeper has cleared call
• 10 - Call failed as could not find user (in GK)
• 11 - Call failed as could not get enough bandwidth
• 12 - Could not find common capabilities
• 13 - Call was forwarded using FACILITY message
• 14 - Call failed a security check and was ended
• 15 - Local endpoint busy
• 16 - Local endpoint congested
• 17 - Remote endpoint busy
• 18 - Remote endpoint congested
• 19 - Could not reach the remote party
• 20 - The remote party is not running an endpoint
• 21 - The remote party host off line
• 22 - The remote failed temporarily app may retry

Property Description

use-radius-accounting ( yes | no ; default: no ) - whether to use radius accounting or not

interim-update ( integer ; default: 0 ) - defines time interval between communications with the router. If this time will exceed, RADIUS server will assume that this connection is down. This value is suggested not to be less than 3 minutes
  • 0 - no interim-update messages are sent at all

Notes

All the parameters, which names begin with h323, are CISCO vendor specific Radius attributes

Gatekeeper

Home menu level: /ip telephony gatekeeper

Description

For each H.323 endpoint gatekeeper stores its telephone numbers. So, gatekeeper knows all telephone numbers for all registered endpoints. And it knows which telephone number is handled by which endpoint. Mapping between endpoints and their telephone numbers is the main functionality of gatekeepers.

If endpoint is registered to endpoint, it does not have to know every single endpoint and every single telephone number, which can be called. Instead, every time some number is dialed, endpoint asks gatekeeper for destination endpoint to call by providing called telephone number to it.
MikroTik IP telephony package includes a very simple gatekeeper. This gatekeeper can be activated by setting `gatekeeper` parameter to `local`. In this case the local endpoint automatically is registered to the local gatekeeper. And any other endpoint can register to this gatekeeper too.

Registered endpoints are added to the `/ip telephony voice-port voip` table. Those entries are marked as dynamic and can not be removed or changed. If there already was an voip entry with the same IP address, it is marked as registered. Remote-address can not be changed for these entries too, but registered voip voice ports can be removed - they will stay as dynamic ones. If there already is a dynamic voip voice port and a static one with the same IP address is added, then instead of dynamic entry, registered will appear.

Dynamic entries disappear when corresponding endpoint unregisters itself from the gatekeeper. Registered entries are static and will stay even after that endpoint will be unregistered from this gatekeeper.

Registered telephone numbers are added to `/ip telephony numbers` table. Here is exactly the same idea behind dynamic and registered telephone numbers as it is with voip voice ports.

When an endpoint registers to the gatekeeper, it sends its own telephone numbers (aliases and prefixes) within this registration request. `/ip telephony numbers` entry is registered to the endpoint only if voice-port for that entry is local (not voip). If `dst-pattern` contains '.' or '_', it is sent as prefix, otherwise - as alias. The known part of the `dst-pattern` is sent as prefix. If there is no known part (`dst-pattern` is "_" or "...", for example), then this entry is not sent at all.

### Property Description

- **gatekeeper** *(none | local | remote; default: none)* - Gatekeeper type to use
  - none - don't use any gatekeeper at all
  - local - start and use local gatekeeper
  - remote - use some other gatekeeper
- **remote-address** *(IP address; default: 0.0.0.0)* - IP address of remote gatekeeper to use. If set to 0.0.0.0, broadcast gatekeeper discovery is used
- **remote-id** *(name)* - name of remote gatekeeper to use. If left empty, first available gatekeeper will be used. Name of locally started gatekeeper is the same as system identity
- **registered** *(read-only: yes | no)* - shows whether local H.323 endpoint is registered to any gatekeeper
- **registered-with** *(read-only: name)* - name of gatekeeper to which local H.323 endpoint is registered

### Example

In most simple case with one phonejack card and some remote gatekeeper, configuration can be as follows:

```bash
[admin@MikroTik] ip telephony voice-port> print
Flags: X - disabled
NAME TYPE AUTODIAL
0 phonejack1 phonejack
1 voip
[admin@MikroTik] ip telephony voice-port voip> print
```
In this case this endpoint will register to gatekeeper with the IP address of 10.0.0.98 and telephone number 11. Every call to telephone number 11 will be transferred from gatekeeper to this endpoint. And this endpoint will route this call to phonejack1 voice port. On any other telephone number gatekeeper will be asked for real destination. From this endpoint it will be possible to call all the endpoints, which are registered to the same gatekeeper. If that gatekeeper has static entries about endpoints, which are not registered to gatekeeper, it still will be possible to call those endpoints by those statically defined telephone numbers at gatekeeper.

Example

For example, if numbers table is like this:

```
[admin@MikroTik] ip telephony numbers> print
Flags: I - invalid, X - disabled, D - dynamic, R - registered
DST-PATTERN VOICE-PORT PREFIX
0 1 phonejack1
1 128 voip1 128
2 77 phonejack1
3 76 phonejack1 55
5 _ voip1
```

then entries 0, 3 and 4 will be sent to the gatekeeper, others are voip voice ports and are ignored. Entry 0 will be sent as prefix 1, entry 3 - as alias 77, and entry 4 - as alias 76.

If IP address of local endpoint is 10.0.0.100, then gatekeeper voip and numbers tables will look as follows:

```
[admin@MikroTik] ip telephony voice-port voip> print
Flags: X - disabled, D - dynamic, R - registered
NAME AUTODIAL REMOTE-ADDRESS JITTER-BUFFER PREFERED-CODEC SIL FAS
0 tst-2.5 10.0.0.101 0s none no yes
1 D local1 127.0.0.1 100ms none no yes
2 D 10.0.0... 10.0.0.100 100ms none no yes
```

[admin@MikroTik] ip telephony numbers> print
Flags: I - invalid, X - disabled, D - dynamic, R - registered
# DST-PATTERN VOICE-PORT PREFIX
0 78 linejack1
1 3... vctx1
2 33_ voip1
3 5_ voip1
4 XD 78 local 78
5 XD 3 local 3
6 D 76 10.0.0.100 76
Here we can see how aliases and prefixes are added to numbers table. Entries 0..3 are static. Entries 4 and 5 are added by registering the local endpoint to the local gatekeeper. Entries 6..8 are added by registering endpoint (with IP address 10.0.0.100) to the local gatekeeper.

For prefixes, '_' is added at the end of dst-pattern to allow any additional digits to be added at the end.

Local endpoint is registered to the local gatekeeper too. So, local aliases and prefixes are added as dynamic numbers too. Only, as they are local and corresponding number entries already exist in the number table, then these dynamically added entries are disabled by default.

If any registered telephone number will conflict with some existing telephone numbers entry, it will be added as disabled and dynamic.

If in gatekeeper's numbers table there already exists exactly the same dst-pattern as some other endpoint is trying to register, this gatekeeper registration for that endpoint will fail.

**Troubleshooting**

**Description**

- **The IP Telephony does not work after upgrading from 2.5.x version** - You need to completely reinstall the router using any installation procedure. You may keep the configuration using either the installation program option or the backup file.

- **The IP Telephony gateway does not detect the drop of the line when connected to some PBXs** - Different regional setting should be used to match the parameters of the PBX. For example, try using uk for Meridian PBX.

- **The IP Telephone does not call the gateway, but gives busy signal** - Enable the logging of IP telephony events under /system logging facility. Use the monitoring function for voice ports to debug your setup while making calls.

- **The IP telephony is working without NAT, but sound goes only in one direction** - Disable H323 service port in firewall: /ip firewall service-port set h323 disabled=yes

- **The IP Telephony does not work through NAT** - Enable H323 service port in firewall: /ip firewall service-port set h323 disabled=no

**A simple example**

**Description**

The following describes examples of some useful IP telephony applications using MikroTik RouterOS.

Let us consider the following example of IP telephony gateway, one MikroTik IP telephone, and one Welltech LAN Phone 101 setup:
Setting up the MikroTik IP Telephone

If you pick up the handset, a dialtone should be heard.

The basic telephony configuration should be as follows:

- Add a voip voice port to the `/ip telephony voice-port voip` for each of the devices you want to call, or want to receive calls from, i.e., (the IP telephony gateway 10.1.1.12 and the Welltech IP telephone 10.5.8.2):
  
  ```
 [admin@Joe] ip telephony voice-port voip> add name=gw remote-address=10.1.1.12
 [admin@Joe] ip telephony voice-port voip> add name=rob remote-address=10.5.8.2
 [admin@Joe] ip telephony voice-port voip> print Flags: X - disabled, D - dynamic, R - registered # NAME AUTODIAL REMOTE-ADDRESS JITTER-BUFFER PREFERED-CODEC SIL FAS 0
gw 10.1.1.12 100ms none no yes 1 rob 10.5.8.2 100ms none no yes [admin@Joe] ip telephony voice-port voip>
  ```

  You should have three vioce ports now:

  ```
 [admin@Joe] ip telephony voice-port> print Flags: X - disabled # NAME TYPE AUTODIAL
 0 linejack1 linejack 1 gw voip 2 rob voip [admin@Joe] ip telephony voice-port>
  ```

- Add at least one unique number to the `/ip telephony numbers` for each voice port. This number will be used to call that port:

  ```
 [admin@Joe] ip telephony numbers> add dst-pattern=31 voice-port=rob [admin@Joe] ip telephony numbers> add dst-pattern=33 voice-port=linejack1 [admin@Joe] ip telephony numbers> add dst-pattern=1. voice-port=gw prefix=1 [admin@Joe] ip telephony numbers> print Flags: I - invalid, X - disabled, D - dynamic, R - registered # DST-PATTERN VOICE-PORT PREFIX 0 31 rob 31 1 33 linejack1 2 1. gw 1 [admin@Joe] ip telephony numbers>
  ```

Here, the `dst-pattern=31` is to call the Welltech IP Telephone, if the number 31 is dialed on the dialpad. The `dst-pattern=33` is to ring the local telephone, if a call for number 33 is received over the network. Anything starting with digit '1' would be sent over to the IP Telephony gateway.

Making calls from the IP telephone 10.0.0.224:

- To call the IP telephone 10.5.8.2, it is enough to lift the handset and dial the number 31
- To call the PBX extension 13, it is enough to lift the handset and dial the number 13

  After establishing the connection with 13, the voice port monitor shows:

  ```
  ```

Setting up the IP Telephony Gateway

The IP telephony gateway `[voip_gw]` requires the following configuration:

- Set the regional setting to match our PBX. The `mikrotik` region will be used in this example:

  ```
 [admin@voip_gw] ip telephony voice-port linejack> set linejack1 region=mikrotik
 [admin@voip_gw] ip telephony voice-port linejack> print Flags: X - disabled
 0 name="linejack1" autodial="" region=mikrotik playback-volume=0
  ```
Add a voip voice port to the /ip telephony voice-port voip for each of the devices you want to call, or want to receive calls from, i.e., (the IP telephone 10.0.0.224 and the Welltech IP telephone 10.5.8.2):

```
[admin@voip_gw] ip telephony voice-port voip> add name=joe \n... remote-address=10.0.0.224
[admin@voip_gw] ip telephony voice-port voip> add name=rob \n... remote-address=10.5.8.2 preferred-codec=G.723.1-6.3k/hw
[admin@voip_gw] ip telephony voice-port voip> print
Flags: X - disabled, D - dynamic, R - registered
NAME AUTODIAL REMOTE-ADDRESS JITTER-BUFFER PREFERED-CODEC SIL FAS
0 joe 10.0.0.224 100ms none no yes
1 rob 10.5.8.2 100ms G.723.1-6.3k/hw no yes
[admin@voip_gw] ip telephony voice-port voip>
```

Add number records to the /ip telephony numbers, so you are able to make calls:

```
[admin@voip_gw] ip telephony numbers> add dst-pattern=31 voice-port=rob prefix=31
[admin@voip_gw] ip telephony numbers> add dst-pattern=33 voice-port=joe prefix=33
[admin@voip_gw] ip telephony numbers> add dst-pattern=1. voice-port=linejack1 \n... prefix=1
[admin@voip_gw] ip telephony numbers> print
Flags: I - invalid, X - disabled, D - dynamic, R - registered
DST-PATTERN VOICE-PORT PREFIX
0 31 rob 31
1 33 joe 33
2 1. linejack1 1
[admin@voip_gw] ip telephony numbers>
```

Making calls through the IP telephony gateway:

• To dial the IP telephone 10.0.0.224 from the office PBX line, the extension number 19 should be dialed, and, after the dial tone has been received, the number 33 should be entered. Thus, the telephone [Joe] is ringed.

After establishing the voice connection with '33' (the call has been answered), the voice port monitor shows:

```
[admin@voip_gw] ip telephony voice-port linejack> monitor linejack1 status:
connection port: line direction: port-to-ip line-status: plugged phone-number: 33
remote-party-name: linejack1 [10.0.0.224] codec: G.723.1-6.3k/hw duration: 1m46s
[admin@voip_gw] ip telephony voice-port linejack>
```

• To dial the IP telephone 10.5.8.2 from the office PBX line, the extension number 19 should be dialed, and, after the dial tone has been received, the number 31 should be entered.

Setting up the Welltech IP Telephone

Please follow the documentation from www.welltech.com.tw on how to set up the Welltech LAN Phone 101. Here we give just brief recommendations:

1. We recommend to upgrade the Welltech LAN Phone 101 with the latest application software.
Telnet to the phone and check what you have, for example:

```
usr/config$ rom -print
```

Download Method : TFTP  
Server Address : 10.5.8.1

Hardware Ver. : 4.0  
Boot Rom : nblp-boot.102a  
Application Rom : wtlp.108h  
DSP App : 48302ce3.127  
DSP Kernel : 48302ck.127  
DSP Test Code : 483cbit.bin  
Ringback Tone : wg-ringbacktone.100  
Hold Tone : wg-holdtone10s.100  
Ringing Tone1 : ringlow.bin  
Ringing Tone2 : ringmid.bin  
Ringing Tone3 : ringhi.bin

```
usr/config$
```

2. Check if you have the codecs arranged in the desired order:

```
usr/config$ voice -print
```

Voice codec setting relate information

<table>
<thead>
<tr>
<th>Sending packet size</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>G.723.1</td>
<td>30 ms</td>
</tr>
<tr>
<td>G.711A</td>
<td>20 ms</td>
</tr>
<tr>
<td>G.711U</td>
<td>20 ms</td>
</tr>
<tr>
<td>G.729A</td>
<td>20 ms</td>
</tr>
<tr>
<td>G.729</td>
<td>20 ms</td>
</tr>
</tbody>
</table>

Priority order codec: g7231 g711a g711u g729a g729

Volume levels:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>voice volume</td>
<td>54</td>
</tr>
<tr>
<td>input gain</td>
<td>26</td>
</tr>
<tr>
<td>dtmf volume</td>
<td>23</td>
</tr>
</tbody>
</table>

Silence suppression & CNG:

G.723.1 : Off

Echo canceller : On

```
usr/config$
```

3. Make sure you have set the H.323 operation mode to phone to phone (P2P), not gatekeeper (GK):

```
usr/config$ h323 -print
```

H.323 stack relate information

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS mode</td>
<td>Non-GK mode</td>
</tr>
<tr>
<td>Registered e164</td>
<td>31</td>
</tr>
<tr>
<td>Registered H323 ID</td>
<td>Rob</td>
</tr>
<tr>
<td>RTP port</td>
<td>16384</td>
</tr>
<tr>
<td>H.245 port</td>
<td>16640</td>
</tr>
<tr>
<td>Allocated port range</td>
<td>start port : 1024</td>
</tr>
<tr>
<td></td>
<td>end port : 65535</td>
</tr>
<tr>
<td>Response timeOut</td>
<td>5</td>
</tr>
<tr>
<td>Connect timeOut</td>
<td>5000</td>
</tr>
</tbody>
</table>

```
usr/config$
```

4. Add the gateway's address to the phonebook:

```
usr/config$ pbook -add name gw ip 10.1.1.12
```

```
usr/config$
```
This may take a few seconds, please wait....
Commit to flash memory ok!

usr/config$ pbook -print
index Name IP E164
======================================================================
1 gw 10.1.1.12
======================================================================
usr/config$

Making calls from the IP telephone 10.5.8.2:

• Just lift the handset and dial '11', or '13' to the PBX extensions.
• Dial '33' for [Joe]. The call request will be sent to the gateway 10.1.1.12, where it will be forwarded to [Joe]. If you want to call [Joe] directly, add a phonebook record for it:
  
  usr/config$ pbook -add name Joe ip 10.0.0.224 e164 33

Use the telephony logging feature on the gateway to debug your setup.

**Setting up MikroTik Router and CISCO Router**

Let's try a different example.

Here are some hints on how to get working configuration for telephony calls between CISCO and MikroTik router.

**Configuration on the MikroTik side**

• G.729a codec MUST be disabled (otherwise connections are not possible at all!!!)
  
  /ip telephony codec disable G.729A-8k/sw

• G.711-ALaw codec should not be used (in some cases there is no sound)
  
  /ip telephony codec disable "G.711-ALaw-64k/sw G.711-ALaw-64k/hw"

• Fast start has to be used (otherwise no ring-back tone and problems with codec negotiation)
  
  /ip telephony voice-port set cisco fast-start=yes

• Telephone number we want to call to must be sent to Cisco, for example
  
  /ip telephony numbers add destination-pattern=101 voice-port=cisco prefix=101

• Telephone number, cisco will call us, must be assigned to some voice port, for example,
  
  /ip telephony numbers add destination-pattern=098 voice-port=linejack

**Configuration on the CISCO side:**

• IP routing has to be enabled
  
  ip routing

• Default values for fast start can be used:
  
  voice service pots default h323 call start exit voice service voip default h323 call start exit

• Enable opening of RTP streams:
  
  voice rtp send-recv

• Assign some E.164 number for local telephone, for example, 101 to port 0/0
  
  dial-peer voice 1 pots destination-pattern 101 port 0/0 exit
create preferred codec listing:

```plaintext
voice class codec codec_class_number codec preference 1 g711ulaw codec preference 2 g723r63 exit
```

NOTE: g723r53 codec can be used, too

Tell, that some foreign E.164 telephone number can be reached by calling to some IP address, for example, 098 by calling to 10.0.0.98

```plaintext
dial-peer voice 11 voip destination-pattern 098 session target ipv4:10.0.0.98
voice-class codec codec_class_number exit
```

NOTE: instead of codec class, one specified codec could be specified:

```plaintext
codec g711ulaw
```

For reference, following is an exported CISCO configuration, that works:

```plaintext
!
version 12.1
no service single-slot-reload-enable
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname Router
!
logging rate-limit console 10 except errors
enable secret 5 1bTMC$nDGl9/n/pc3OMbtWxADMg1
enable password 123
!
memory-size iomem 25
ip subnet-zero
no ip finger
!
call rsvp-sync
voice rtp send-recv
!
voice class codec 1
codec preference 1 g711ulaw
codec preference 2 g723r63
!
interface FastEthernet0
ip address 10.0.0.101 255.255.255.0
no ip mroute-cache
speed auto
half-duplex
!
ip classless
ip route 0.0.0.0 0.0.0.0 10.0.0.1
no ip http server
!
dialer-list 1 protocol ip permit
dialer-list 1 protocol ipx permit
!
voice-port 0/0
!
voice-port 0/1
!
voice-port 2/0
!
voice-port 2/1
!
dial-peer voice 1 pots
destination-pattern 101
port 0/0
!
dial-peer voice 97 voip
destination-pattern 097
session target ipv4:10.0.0.97
codec g711ulaw
!
```
Setting up PBX to PBX Connection over an IP Network

To interconnect two telephone switchboards (PBX) over an IP network, two IP telephony gateways should be configured. The setup is shown in the following diagram:

We want to be able to use make calls from local telephones of one PBX to local telephones or external lines of the other PBX.

Assume that:

• The IP telephony gateway #1 has IP address 10.0.0.182, and the name of the Voicetronix first line is ‘vctx1’.
• The IP telephony gateway #2 has IP address 10.0.0.183, and the name of the Voicetronix first line is ‘vctx1’.

The IP telephony configuration should be as follows:

• IP telephony gateway #1 should have:
  /ip telephony voice-port voip add name=gw2 remote-address=10.0.0.183 /ip telephony numbers add dst-pattern=1.. voice-port=gw2 prefix=2 add dst-pattern=2.. voice-port=vctx1 prefix=1

• IP telephony gateway #2 should have
  /ip telephony voice-port voip add name=gw1 remote-address=10.0.0.182 /ip telephony numbers add dst-pattern=2.. voice-port=vctx1 prefix=1 add dst-pattern=1.. voice-port=gw1 prefix=2

The system works as follows:

To dial from the main office PBX#1 any extension of the remote office PBX#2, the extension with the connected gateway at PBX#1 should be dialed first. Then, after the dial tone of the gateway#1 is received, the remote extension number should be dialed.

To dial from the main office PBX#2 any extension of the remote office PBX#1, the actions are the same as in first situation.
System Watchdog

Summary

System watchdog feature is needed to reboot the system in case of software failures.

Specifications

Packages required: system
License required: level1
Home menu level: /system watchdog
Hardware usage: Not significant

Hardware Watchdog Management

Home menu level: /system watchdog

Description

This menu allows to configure system to reboot on kernel panic, when an IP address does not respond, or in case the system has locked up. Software watchdog timer is used to provide the last option, so in very rare cases (caused by hardware malfunction) it can lock up by itself. There is a hardware watchdog device available in RouterBOARD hardware, which can reboot the system in any case.

Property Description

reboot-on-failure ( yes | no ; default: no ) - whether to reboot on kernel panic

watch-address ( IP address ; default: none ) - if set, the system will reboot in case 6 sequential pings (sent once per 10 seconds) will fail
  * none - disable this option

watchdog-timer ( yes | no ; default: no ) - whether to reboot if system is unresponsive for a minute
**ping-start-after-boot** (time; default: 5m) - specifies how long after reboot not to test and ping watch-address. Default setting means that if watch-address is set and is not reachable, the router will reboot about every 6 minutes.

**Example**

To make system reboot in case of any software failure:

```
[admin@MikroTik] system watchdog> set reboot-on-failure=yes watchdog-timer=yes
[admin@MikroTik] system watchdog> print
 reboot-on-failure: yes
 watch-address: none
 watchdog-timer: yes
[admin@MikroTik] system watchdog>
```
UPS Monitor

This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
  Summary
  Specifications
  Related Documents
  Description
  UPS Monitor Setup
    Property Description
    Notes
    Example
  Runtime Calibration
    Description
    Notes
    Example
  UPS Monitoring
    Property Description
    Example

General Information

Summary

The UPS monitor feature works with APC UPS units that support “smart” signaling. This feature enables the network administrator to monitor the UPS and set the router to ‘gracefully’ handle any power outage with no corruption or damage to the router. The basic purpose of this feature is to ensure that the router will come back online after an extended power failure. To do this, the router will monitor the UPS and set itself to hibernate mode when the ‘utility’ power is down and the UPS battery is has less than 10% of its battery power left. The router will then continue to monitor the UPS (while in hibernate mode) and then restart itself after when the ‘utility’ power returns. If the UPS battery is drained and the router loses all power, the router will power back to full operation when the ‘utility’ power returns.

The UPS monitor feature on the MikroTik RouterOS supports

- hibernate and safe reboot on power and battery failure
- UPS battery test and run time calibration test
- monitoring of all "smart" mode status information supported by UPS
- logging of power changes

Specifications
Related Documents

- **Package Management**

Description

Cabling

The APC UPS (BackUPS Pro or SmartUPS) requires a special serial cable. If no cable came with the UPS, a cable may be ordered from APC or one can be made "in-house". Use the following diagram:

<table>
<thead>
<tr>
<th>Router Side (DB9f)</th>
<th>Signal</th>
<th>Direction</th>
<th>UPS Side (DB9m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Receive</td>
<td>IN</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Send</td>
<td>OUT</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Ground</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>CTS</td>
<td>IN</td>
<td>6</td>
</tr>
</tbody>
</table>

**UPS Monitor Setup**

Home menu level: /system ups

**Property Description**

- **alarm-setting** *(delayed | immediate | low-battery | none ; default: immediate)* - UPS sound alarm setting:
  - **delayed** - alarm is delayed to the on-battery event
  - **immediate** - alarm immediately after the on-battery event
  - **low-battery** - alarm only when the battery is low
  - **none** - do not alarm

- **enabled** *(yes | no ; default: no)* - status of the monitoring is disabled by default

- **manufacture-date** *(read-only: text)* - the UPS's date of manufacture in the format "mm/dd/yy" (month, day, year)

- **min-run-time** *(time ; default: 5m)* - minimal run time remaining. After a 'utility' failure, the router will monitor the run-time-left value. When the value reaches the min-run-time value, the router will go to hibernate mode:
  - **0** - the router will go to hibernate mode when the "battery low" signal is sent indicating that the battery power is below 10%
**model** (read-only: text) - less than 32 ASCII character string consisting of the UPS model name (the words on the front of the UPS itself)

**nominal-battery-voltage** (read-only: integer) - the UPS's nominal battery voltage rating (this is not the UPS's actual battery voltage)

**off-line-time** (time; default: 5m) - how long to work on batteries. The router waits that amount of time and then goes into hibernate mode until the UPS reports that the 'utility' power is back

- 0 - the router will go into hibernate mode according the min-run-time setting and 10% of battery power event. In this case, the router will wait until the UPS reports that the battery power is below 10%

**port** (name) - communication port of the router

**rtc-alarm-setting** (delayed | immediate | low-battery | none; default: none) - UPS sound alarm setting during run time calibration:

- delayed - alarm is delayed to the on-battery event
- immediate - alarm immediately after the on-battery event
- low-battery - alarm only when the battery is low
- none - do not alarm

**serial** (read-only: text) - a string of at least 8 characters directly representing the UPS's serial number as set at the factory. Newer SmartUPS models have 12-character serial numbers

**version** (read-only: text) - UPS version, consists of three fields: SKU number, firmware revision, country code. The county code may be one of the following:

- I - 220/230/240 Vac
- D - 115/120 Vac
- A - 100 Vac
- M - 208 Vac
- J - 200 Vac

**Notes**

In order to enable UPS monitor, the serial port should be available.

**Example**

To enable the UPS monitor for port **serial1**:

```
[admin@MikroTik] system ups> set port=serial1 enabled=yes
[admin@MikroTik] system ups> print
 enabled: yes
 port: serial1
 off-line-time: 5m
 min-run-time: 5m
 alarm-setting: immediate
 rtc-alarm-setting: immediate
 model: "Back-UPS Pro 420"
 version: "11.4.I"
 serial-number: "NB9941252992"
 manufacture-date: "10/08/99"
 nominal-battery-voltage: 12
[admin@MikroTik] system ups>
```
**Runtime Calibration**

Command name: `/system ups run-time-calibration`

**Description**

The `run-time-calibration` command causes the UPS to start a run time calibration until less than 25% of full battery capacity is reached. This command calibrates the returned run time value.

**Notes**

The test begins only if the battery capacity is 100%.

**Example**

```
[MikroTik] system ups> run-time-calibration
```

**UPS Monitoring**

Command name: `/system ups monitor`

**Property Description**

- **battery-charge** (percentage) - the UPS's remaining battery capacity as a percent of the fully charged condition
- **battery-voltage** - the UPS's present battery voltage. The typical accuracy of this measurement is ±5% of the maximum value (depending on the UPS's nominal battery voltage)
- **frequency** (percentage) - when operating on-line, the UPS's internal operating frequency is synchronized to the line within variations within 3 Hz of the nominal 50 or 60 Hz. The typical accuracy of this measurement is ±1% of the full scale value of 63 Hz
- **line-voltage** - the in-line utility power voltage
- **load** (percentage) - the UPS's output load as a percentage of full rated load in Watts. The typical accuracy of this measurement is ±3% of the maximum of 105%
- **low-battery** - only shown when the UPS reports this status
- **on-battery** (yes | no) - Whether UPS battery is supplying power
- **on-line** (yes | no) - whether power is being provided by the external utility (power company)
- **output-voltage** - the UPS's output voltage
- **overloaded-output** - only shown when the UPS reports this status
- **replace-battery** - only shown when the UPS reports this status
- **run-time-calibration-running** - only shown when the UPS reports this status
- **run-time-left** (time) - the UPS's estimated remaining run time in minutes. You can query the UPS when it is operating in the on-line, bypass, or on-battery modes of operation. The UPS's remaining run time reply is based on available battery capacity and output load
- **smart-boost-mode** - only shown when the UPS reports this status
**smart-ssdd-mode** - only shown when the UPS reports this status

**transfer-cause** (*text*) - the reason for the most recent transfer to on-battery operation (only shown when the unit is on-battery)

### Example

When running on utility power:

```
[admin@MikroTik] system ups> monitor
 on-line: yes
 on-battery: no
 run-time-left: 11m
 battery-charge: 100
 battery-voltage: 13
 line-voltage: 221
 output-voltage: 221
 load: 57
 frequency: 50

[admin@MikroTik] system ups>
```

When running on battery:

```
[admin@MikroTik] system ups> monitor
 on-line: no
 on-battery: yes
 transfer-cause: "utility voltage notch or spike detected"
 run-time-left: 9m
 battery-charge: 95
 battery-voltage: 11
 line-voltage: 0
 output-voltage: 233
 load: 66
 frequency: 50

[admin@MikroTik] system ups>
```
VRRP

Document revision 1.4 (Fri Mar 05 08:42:58 GMT 2004)
This document applies to MikroTik RouterOS V2.8

Table of Contents

Table of Contents
General Information
  Summary
  Specifications
  Related Documents
  Description
VRRP Routers
  Description
  Property Description
  Notes
Virtual IP addresses
  Property Description
  Notes
A simple example of VRRP fail over
  Description
  Configuring Master VRRP router
  Configuring Backup VRRP router
  Testing fail over

General Information

Summary

Virtual Router Redundancy Protocol (VRRP) implementation in the MikroTik RouterOS is RFC2338 compliant. VRRP protocol is used to ensure constant access to some resources. Two or more routers (referred as VRRP Routers in this context) create a highly available cluster (also referred as Virtual routers) with dynamic fail over. Each router can participate in not more than 255 virtual routers per interface. Many modern routers support this protocol.

Network setups with VRRP clusters provide high availability for routers without using clumsy ping-based scripts.

Specifications

Packages required: system
License required: level1
Home menu level: /ip vrrp
Standards and Technologies: VRRP, AH, HMAC-MD5-96 within ESP and AH
Hardware usage: Not significant

Related Documents
Virtual Router Redundancy Protocol is an election protocol that provides high availability for routers. A number of routers may participate in one or more virtual routers. One or more IP addresses may be assigned to a virtual router. A node of a virtual router can be in one of the following states:

- **MASTER** state, when the node answers all the requests to the instance's IP addresses. There may only be one MASTER node in a virtual router. This node sends VRRP advertisement packets to all the backup routers (using multicast address) every once in a while (set in interval property).

- **BACKUP** state, when the VRRP router monitors the availability and state of the Master Router. It does not answer any requests to the instance's IP addresses. Should master become unavailable (if at least three sequential VRRP packets are lost), election process happens, and new master is proclaimed based on its priority. For more details on virtual routers, see RFC2338.

### VRRP Routers

Home menu level: `/ip vrrp`

#### Description

A number of VRRP routers may form a virtual router. The maximal number of clusters on one network is 255 each having a unique VRID (Virtual Router ID). Each router participating in a VRRP cluster must have it priority set to a valid value.

#### Property Description

- **name** (name) - assigned name of the VRRP instance
- **interface** (name) - interface name the instance is running on
- **vrid** (integer: 0..255; default: 1) - Virtual Router Identifier (must be unique on one interface)
- **priority** (integer: 1..255; default: 100) - priority of the current node (higher values mean higher priority)
  - **255** - RFC requires that the router that owns the IP addresses assigned to this instance had the priority of 255
- **interval** (integer: 1..255; default: 1) - VRRP update interval in seconds. Defines how frequently the master of the given cluster sends VRRP advertisement packets
- **preemption-mode** (yes | no; default: yes) - whether preemption mode is enabled
  - **no** - a backup node will not be elected to be a master until the current master fail even if the backup node has higher priority than the current master
  - **yes** - the master node always has the priority
- **authentication** (none | simple | ah; default: none) - authentication method to use for VRRP
advertisement packets

- **none** - no authentication
- **simple** - plain text authentication
- **ah** - Authentication Header using HMAC-MD5-96 algorithm

**password** (text; default: "") - password required for authentication depending on method used can be ignored (if no authentication used), 8-character long text string (for plain-text authentication) or 16-character long text string (128-bit key required for AH authentication)

**on-backup** (name; default: "") - script to execute when the node switch to backup state

**on-master** (name; default: "") - script to execute when the node switch to master state

**Notes**

All the nodes of one cluster must have the same vrid, interval, preemption-mode, authentication and password.

As said before, priority of 255 is reserved for the real owner of the virtual router's IP addresses. Theoretically, the owner should have the IP address added statically to its IP address list and also to the VRRP virtual address list, but you should never do this! Any addresses that you are using as virtual addresses (i.e. they are added in /ip vrrp address) must not appear in /ip address list as they otherwise can cause IP address conflict, which will not be resolved automatically.

Also You must have an IP address (no matter what) on the interface you want to run VRRP on.

**Example**

To add a VRRP instance on ether1 interface, forming (because priority is 255) a virtual router with vrid of 1:

```
[admin@MikroTik] ip vrrp> add interface=ether1 vrid=1 priority=255
[admin@MikroTik] ip vrrp> print
Flags: X - disabled, I - invalid, M - master, B - backup
 0 I name="vr1" interface=ether1 vrid=1 priority=255 interval=1
 preemption-mode=yes authentication=none password="" on-backup=""
 on-master=""
[admin@MikroTik] ip vrrp>
```

**Virtual IP addresses**

Home menu level: /ip vrrp address

**Property Description**

- **address** (IP address) - IP address belongs to the virtual router
- **network** (IP address) - IP address of the network
- **broadcast** (IP address) - broadcasting IP address
- **virtual-router** (name) - VRRP router's name the address belongs to

**Notes**
The virtual IP addresses should be the same for each node of a virtual router.

**Example**

To add a virtual address of **192.168.1.1/24** to the **vr1** VRRP router:

```
[admin@MikroTik] ip vrrp> address add address=192.168.1.1/24 \\
 ... virtual-router=vr1
[admin@MikroTik] ip vrrp> address print
Flags: X - disabled, A - active
 # ADDRESS NETWORK BROADCAST VIRTUAL-ROUTER
 0 192.168.1.1/24 192.168.1.0 192.168.1.255 vr1
```

**A simple example of VRRP fail over**

**Description**

VRRP protocol may be used to make a redundant Internet connection with seamless fail-over. Let us assume that we have 192.168.1.0/24 network and we need to provide highly available Internet connection for it. This network should be NATted (to make fail-over with public IPs, use such dynamic routing protocols as BGP or OSPF together with VRRP). We have connections to two different Internet Service Providers (ISPs), and one of them is preferred (for example, it is cheaper or faster).

This example shows how to configure VRRP on the two routers shown on the diagram. The routers must have initial configuration: interfaces are enabled, each interface have appropriate IP address (note that each of the two interfaces should have an IP address), routing table is set correctly (it should have at least a default route). SRC-NAT or masquerading should also be configured before. See the respective manual chapters on how to make this configuration.

We will assume that the interface the 192.168.1.0/24 network is connected to is named **local** on both VRRP routers

**Configuring Master VRRP router**

First of all we should create a VRRP instance on this router. We will use the priority of 255 for this router as it should be preferred router.

```
[admin@MikroTik] ip vrrp> add interface=local priority=255
[admin@MikroTik] ip vrrp> print
Flags: X - disabled, I - invalid, M - master, B - backup
 0 M name="vr1" interface=local vrid=1 priority=255 interval=1
 preemption-mode=yes authentication=none password="" on-backup=""
 on-master=""
```

Next the virtual IP address should be added to this VRRP instance

```
[admin@MikroTik] ip vrrp> address add address=192.168.1.1/24 \\
 ... virtual-router=vr1
[admin@MikroTik] ip vrrp> address print
Flags: X - disabled, A - active
```
# ADDRESS NETWORK BROADCAST VIRTUAL-ROUTER
0 192.168.1.1/24 192.168.1.0 192.168.1.255 vr1

[admin@MikroTik] ip vrrp>

Now this address should appear in /ip address list:

[admin@MikroTik] ip address> print
Flags: X - disabled, I - invalid, D - dynamic
# ADDRESS   NETWORK   BROADCAST INTERFACE
0 10.0.0.1/24   10.0.0.0   10.0.0.255 public
1 192.168.1.2/24 192.168.1.0 192.168.1.255 local
2 D 192.168.1.3/24 192.168.1.0 192.168.1.255 local

[admin@MikroTik] ip address>

Configuring Backup VRRP router

Now we will create VRRP instance with lower priority (we can use the default value of 100), so this router will back up the preferred one:

[admin@MikroTik] ip vrrp> add interface=local
[admin@MikroTik] ip vrrp> print
Flags: X - disabled, I - invalid, M - master, B - backup
0 B name="vr1" interface=local vrid=1 priority=100 interval=1
  preemption-mode=yes authentication=none password="" on-backup=""
on-master=""

[admin@MikroTik] ip vrrp>

Now we should add the same virtual address as was added to the master node:

[admin@MikroTik] ip vrrp> address add address=192.168.1.1/24 ...

\... virtual-router=vr1
[admin@MikroTik] ip vrrp> address print
Flags: X - disabled, A - active
# ADDRESS   NETWORK   BROADCAST VIRTUAL-ROUTER
0 192.168.1.1/24 192.168.1.0 192.168.1.255 vr1

[admin@MikroTik] ip vrrp>

Note that this address will not appear in /ip address list:

[admin@MikroTik] ip address> print
Flags: X - disabled, I - invalid, D - dynamic
# ADDRESS   NETWORK   BROADCAST INTERFACE
0 10.1.0.1/24   10.0.0.0   10.0.0.255 public
1 192.168.1.3/24 192.168.1.0 192.168.1.255 local

[admin@MikroTik] ip address>

Testing fail over

Now, when we will disconnect the master router, the backup one will switch to the master state:

[admin@MikroTik] ip vrrp> print
Flags: X - disabled, I - invalid, M - master, B - backup
0 M name="vr1" interface=local vrid=1 priority=100 interval=1
  preemption-mode=yes authentication=none password="" on-backup=""
on-master=""

[admin@MikroTik] ip vrrp> /ip address print
Flags: X - disabled, I - invalid, D - dynamic
# ADDRESS   NETWORK   BROADCAST INTERFACE
0  10.1.0.1/24   10.0.0.0   10.0.0.255   public
1  192.168.1.3/24  192.168.1.0  192.168.1.255  local
2 D 192.168.1.1/24  192.168.1.0  192.168.1.255  local

[admin@MikroTik] ip vrrp>